首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex-rotation method adapted to solving the multichannel scattering problem in the two-body system where the interaction potential contains the long-range Coulomb components is described. The scattering problem is reformulated as the problem of solving a nonhomogeneous Schrödinger equation in which the nonhomogeneous term involves a Coulomb potential cut off at large distances. The incident wave appearing in the nonhomogeneous term is a solution of the Schrödinger equation with longrange Coulomb interaction. This formulation is free from approximations associated with a direct cutoff of Coulomb interaction at large distances. The efficiency of this formalism is demonstrated by considering the example of solving scattering problems in the α-α and p-p systems.  相似文献   

2.
We study the cubic Schrödinger model for attractive coupling. Using the quantized version of the Zakharov-Shabat eigenvalue problem we define operators, which create the eigenstates of the corresponding quantum field theoretical Hamiltonian. In particular, we construct the well-knownn-particle bound states of this model.  相似文献   

3.
《Nuclear Physics B》1999,561(3):451-466
A generalized inverse scattering method has been developed for arbitrary n-dimensional Lax equations. Subsequently, the method has been used to obtain N-soliton solutions of a vector higher order non-linear Schrödinger equation, proposed by us. It has been shown that under a suitable reduction, the vector higher order non-linear Schrödinger equation reduces to the higher order non-linear Schrödinger equation. An infinite number of conserved quantities have been obtained by solving a set of coupled Riccati equations. Gauge equivalence is shown between the vector higher order non-linear Schrödinger equation and the generalized Landau–Lifshitz equation and the Lax pair for the latter equation has also been constructed in terms of the spin field, establishing direct integrability of the spin system.  相似文献   

4.
We propose a new approach for the study of the time evolution of a factorized N-particle bosonic wave function with respect to a mean-field dynamics with a bounded interaction potential. The new technique, which is based on the control of the growth of the correlations among the particles, leads to quantitative bounds on the difference between the many-particle Schrödinger dynamics and the one-particle nonlinear Hartree dynamics. In particular the one-particle density matrix associated with the solution to the N-particle Schrödinger equation is shown to converge to the projection onto the one-dimensional subspace spanned by the solution to the Hartree equation with a speed of convergence of order 1/N for all fixed times.  相似文献   

5.
We study spectra of Schrödinger operators on ? d . First we consider a pair of operators which differ by a compactly supported potential, as well as the corresponding semigroups. We prove almost exponential decay of the singular values μ n of the difference of the semigroups as n→∞ and deduce bounds on the spectral shift function of the pair of operators. Thereafter we consider alloy type random Schrödinger operators. The single site potential u is assumed to be non-negative and of compact support. The distributions of the random coupling constants are assumed to be Hölder continuous. Based on the estimates for the spectral shift function, we prove a Wegner estimate which implies Hölder continuity of the integrated density of states.  相似文献   

6.
The quantal system of Bose particles described by the non-linear Schrödinger equation i/?t = -12?2φ/?x2 + cφ1φ2, with c= cxf∞ and via the ground state with finite particle density, is the 1- dimensional gas of impenetrable bosons studied by M. Girardeau, T.D. Schultz, A. Lenard, H.G. Vaidya and C.A. Tracy. We show that the 2-point (resp. 2n-point) function, or the 1-particle (resp. n-particle) reduced density matrix, of this system satisfies a non-linear differential equation (resp. a system of non-linear partial differential equations) of Painlevé type. Derivation of these equations is based on the link between field operators in a Clifford group and monodromy preserving deformation theory, which was previously established and applied to the 2-dimensional Ising model and other problems. Several related topics are also discussed.  相似文献   

7.
The singular vectors in Verma modules over the Schrödinger algebra ?(n) in (n + 1)-dimensional space-time are found for the case of general representations. Using the singular vectors, hierarchies of equations invariant under Schrödinger algebras are constructed.  相似文献   

8.
The appearance of the Bethe Ansatz equation for the Nonlinear Schrödinger equation in the equivariant integration over the moduli space of Higgs bundles is revisited. We argue that the wave functions of the corresponding two-dimensional topological U(N) gauge theory reproduce quantum wave functions of the Nonlinear Schrödinger equation in the N-particle sector. This implies the full equivalence between the above gauge theory and the N-particle sub-sector of the quantum theory of the Nonlinear Schrödinger equation. This also implies the explicit correspondence between the gauge theory and the representation theory of the degenerate double affine Hecke algebra. We propose a similar construction based on the G/G gauged WZW model leading to the representation theory of the double affine Hecke algebra.  相似文献   

9.
The properties of Mittag-Leffler function are reviewed within the framework of an umbral formalism. We take advantage from the formal equivalence with the exponential function to define the relevant semigroup properties. We analyse the relevant role in the solution of Schrödinger type and heat-type fractional partial differential equations and explore the problem of operatorial ordering finding appropriate rules when non-commuting operators are involved. We discuss the coherent states associated with the fractional Schödinger equation, analyze the relevant Poisson type probability amplitude and compare with analogous results already obtained in the literature.  相似文献   

10.
Integral equations are obtained for the scattering of N identical particles using a form of the N-particle scattering equations derived previously. The equations couple together only transition operators between physical two cluster channels, the breakup amplitudes being expressed in terms of quadratures over two-cluster amplitudes. The kernel of the equations becomes connected after a single iteration. The number of coupled equations for identical particles is 12N or12(N?1) when N is even or odd respectively.  相似文献   

11.
We find the high energy asymptotics for the singular Weyl–Titchmarsh m-functions and the associated spectral measures of perturbed spherical Schrödinger operators (also known as Bessel operators).We apply this result to establish an improved local Borg–Marchenko theorem for Bessel operators as well as uniqueness theorems for the radial quantum scattering problem with nontrivial angular momentum.  相似文献   

12.
Eigenfunctions of the fractional Schrödinger operators in a domain D are considered, and a relation between the supremum of the potential and the distance of a maximizer of the eigenfunction from ? D is established. This, in particular, extends a recent result of Rachh and Steinerberger arXiv:1608.06604 (2017) to the fractional Schrödinger operators. We also propose a fractional version of the Barta’s inequality and also generalize a celebrated Lieb’s theorem for fractional Schrödinger operators. As applications of above results we obtain a Faber-Krahn inequality for non-local Schrödinger operators.  相似文献   

13.
We define a form-preserving transformation (also called point canonical transformation) for the time-dependent Schrödinger equation (TDSE) in (n+1) dimensions. The form-preserving transformation is shown to be invertible and to preserve L 2-normalizability. We give a class of time-dependent TDSEs that can be mapped onto stationary Schrödinger equations by our form-preserving transformation. As an example, we generate a solvable, time-dependent potential of Coulombic ring-shaped type together with the corresponding exact solution of the TDSE in (3+1) dimensions. We further consider TDSEs with position-dependent (effective) masses and show that there is no form-preserving transformation between them and the conventional TDSEs, if the spatial dimension of the system is higher than one.  相似文献   

14.
《Nuclear Physics B》1999,538(3):535-586
We provide detailed arguments on how to derive properties of generalized form factors, originally proposed by one of the authors (M.K.) and Weisz twenty years ago, solely based on the assumption of ‘maximal analyticity” and the validity of the LSZ reduction formalism. These properties constitute consistency equations which allow the explicit evaluation of the n-particle form factors once the scattering matrix is known. The equations give rise to a matrix Riemann-Hilbert problem. Exploiting the “off-shell” Bethe ansatz we propose a general formula for form factors for an odd number of particles. For the sine-Gordon model alias the massive Thirring model we exemplify the general solution for several operators. In particular we calculate the three-particle form factor of the soliton field, carry out a consistency check against the Thirring model perturbation theory and thus confirm the general formalism.  相似文献   

15.
The pion-three-nucleon system is investigated using coupled Schrödinger equations. The coupling between the four-body (πNNN) and three-body (NNN) systems is explicitly implemented by operators for emission and absorption of the pion by each nucleon. The only simplifying assumption is the separable form for amplitudes pertaining to pure potential scattering. A set of Amado-Lovelace type equations is derived, from which the amplitude for the reaction π + 3He→ π + 3He can be evaluated. The integral equations involve intermediate integration over single relative momenta so that subsequent numerical solution is within reach.  相似文献   

16.
The nonlinear Schrödinger equation with periodic coefficients is analyzed under the condition of large variation in the local dispersion. The solution after n periods is represented as the sum of the solution to the linear part of the nonlinear Schrödinger equation and the nonlinear first-period correction multiplied by the number of periods n. An algorithm for calculating the quasilinear solution with arbitrary initial conditions is proposed. The nonlinear correction to the solution for a sequence of Gaussian pulses is obtained in the explicit form.  相似文献   

17.
A quantum nonlinear Schrödinger model with supermatrices and attractive coupling is studied by using the quantum inverse scattering method. The eigenstates of the Hamiltonian and the infinite number of the conserved quantities of the system are constructed. In particular, theN-particle bound states with the mixture of bosons and fermions are found. The energy of theN-particle eigenstate are Σ i=1 N andNp 2 ?N(N 2?1)c 2/12 for the scattering state and the bound state respectively.  相似文献   

18.
For a large class of non-local, non separable potentials with non-compact support, the solution of the radial integrodifferential equation may be reduced to the solution of a homogeneous linear integral equation of Fredholm type with a quadratically integrable kernel. In this way we derive expansions of the wave functions and the Green's function of the Schrödinger equation with a non-local potential in terms of bound states, resonant states and a continuum of scattering functions with complex wave number. The rules of normalization, orthogonality and completeness satisfied by the eigenstates of the Schrödinger equation belonging to complex eigenvalues with Im En < 0, (Gamow or resonant states) are also derived. Finally, by means of a realistic example, it is shown how to use these expansions to exhibit the resonant behaviour of the differential cross section. Explicit expressions for the transition amplitudes and the partial widths in terms of expectation values of operators computed with Gamow functions are given.  相似文献   

19.
A (to our knowledge) novel Generalized Nonlinear Schrödinger equation based on the modifications of Nottale-Cresson’s fractal-scale calculus and resulting from the noncommutativity of the phase space coordinates is explicitly derived. The modifications to the ground state energy of a harmonic oscillator yields the observed value of the vacuum energy density. In the concluding remarks we discuss how nonlinear and nonlocal QM wave equations arise naturally from this fractal-scale calculus formalism which may have a key role in the final formulation of Quantum Gravity.  相似文献   

20.
The connection is made between a many-time approach to S-matrix elements and energy eigenvalues, which naturally arises from a field theoretical point of view, and the single time Schrödinger- and Breit-like formalism often used in detailed calculations for many-particle systems, such as many-electron atoms. Specifically, the many-particle Bethe-Salpeter equation is expressed in terms of the corresponding Schrödinger equation for the non-relativistic case in which the Bethe-Salpeter kernel consists of only two-particle local static interactions. Also, the one-photon transition matrix element for this case in the Bethe-Salpeter formalism is shown to be equivalent to the corresponding well-known Schrödinger result. The treatment developed is well suited to systematic relativistic generalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号