首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
通过对比电感耦合等离子体发射光谱法(ICP-OES)与石墨炉原子吸收法(AAS)测定水中重金属的检出限、重复性、加标回收率等实验,验证两种方法的准确性,从而为饮用水中重金属的测定提供可靠的方法。结果表明,石墨炉原子吸收法测定饮用水中砷、镉、铬、铅、汞、硒检出限均低于ICP-OES法,但ICP-OES法测定线性范围宽,重复性和加标回收率均优于石墨炉原子吸收法,分析速度快,操作便捷,结果满意,是目前饮用水中重金属的测定非常可靠的方法。  相似文献   

2.
通过对比电感耦合等离子体原子发射光谱法(ICP-OES)与石墨炉原子吸收光谱法(GF-AAS)测定水中重金属的检出限、精密度、加标回收率等实验,验证两种方法的准确性,从而为饮用水中重金属的测定提供可靠的方法。结果表明,石墨炉原子吸收光谱法测定饮用水中砷、镉、铬、铅、汞、硒的检出限均低于ICP-OES法,但ICP-OES法测定线性范围宽,重复性和加标回收率均优于石墨炉原子吸收光谱法,分析速度快,操作便捷,结果满意,是目前饮用水中重金属测定非常可靠的方法。  相似文献   

3.
建立微波消解样品,石墨炉原子吸收光谱法测定鱼肉和河蚌中重金属Pb,Cd,Cr,Cu,Ni含量的方法。优化了石墨炉原子吸收光谱法测定条件,在最佳实验条件下,选用磷酸二氢铵作为Pb,Cd,Cr,Cu的基体改进剂,抗坏血酸作为Ni的基体改进剂。Pb,Cd,Cr,Cu,Ni的检出限分别为0.05,0.01,0.05,0.05,0.07μg/g,实际样品测定结果的相对标准偏差为6.3%~14.5%(n=6),加标回收率为84.5%~113.0%。测定了牡蛎标准参考样,测定值在标准值可接受范围内。该方法检出限低、准确度高,适用于鱼类、河蚌样品中重金属含量的分析。  相似文献   

4.
提出了以抗坏血酸作基体改进剂石墨炉原子吸收光谱测定水中铷的新方法.本法特征量为4.6pg Rb,检出限(3s)为 0.27μg·L~(-1)样品加标回收率为95%~110%.方法简便、快速、结果准确可靠.  相似文献   

5.
建立石墨炉原子吸收法测定土壤中铅、镉、钴、锑、铍含量的方法。优化了石墨炉原子吸收光谱法测定条件,在最佳实验条件下,采用硝酸-盐酸-氢氟酸-双氧水混合酸体系微波消解土壤样品,选用抗坏血酸-硝酸镁混合溶液为基体改进剂。铅、镉、钴、锑、铍的质量浓度在各自的范围内与吸光度成良好的线性关系,相关系数均大于0.999,各元素的检出限为0.008~0.06 μg/g。样品加标回收率为90.5%~104.0%,测定结果的相对标准偏差均小于2.5%(n=6)。该方法样品前处理简便,灵敏度高,检出限低,测定结果准确、可靠,可用于土壤中铅、镉、钴、锑、铍的测定。  相似文献   

6.
建立了石墨炉原子吸收光谱法测定食盐中钡的方法,不需要对石墨管做任何处理,也无需对样品进行除盐处理,通过优化石墨炉升温程序,极大改善了食盐样品中钡测定的灵敏度和峰型。钡在0.00~50.0 μg/L浓度范围呈现良好的线性关系,相关系数优于0.999,检出限为0.650 mg/kg(以称样量0.200 g,定容至50 mL计算)。食盐样品钡加标回收率范围为81.3%~105.1%,相对标准偏差在8.9%以内。方法稳定可靠,准确度较高,适用于食盐中钡的测定。  相似文献   

7.
石墨炉原子吸收光谱法快速测定饮水中硒   总被引:7,自引:0,他引:7  
硒是生物体必需的营养元素 ,但过量又会中毒。人体中的硒主要来自食品和饮水。饮水中硒的测定方法已有荧光法[1] 、原子荧光法[1] 、氢化物发生原子吸收光谱法[2 ] 和极谱法[3] 。以往的方法或操作繁琐 ,或受仪器的限制。本文建立了石墨炉原子吸收光谱法测定 ,方法不仅快速简便 ,而且测定结果准确可靠。方法的检出限为 3.0× 10 - 11g ,精密度小于 5 % ,加标回收率在 96 %~ 10 5 %之间。1 试验部分1.1 主要仪器与试剂岛津AA 6 80 0原子吸收分光光度计 ,AA 6 5 0 0石墨炉 ,ASC 6 10 0自动进样器 ,普通石墨管。硒标准储备溶液 (国…  相似文献   

8.
对石墨炉原子吸收光谱法测定地球化学样品中痕量银进行了研究。样品经盐酸、硝酸、硫酸、高氯酸溶解,在盐酸(1.2mol/L)介质中用醋酸丁酯萃取银与二苯硫脲螯合物,用石墨炉原子吸收光谱法测定地球化学样品中痕量银,方法检出限为0.011ng/mL,相对标准偏差(RSD,n=11)为6.0%~12.2%,加标回收率为96.00%~105.00%。能满足地球化学样品中银含量为0.02~5μg/g范围内银测定的准确度和精密度的要求。  相似文献   

9.
提出了固体悬浮液进样石墨炉原子吸收光谱法直接测定铬的方法,并对各分析条件进行了优化.采用1.2 g·L-1琼脂溶液为悬浮剂,将样品均匀悬浮于其中,由自动进样器直接将样品悬浮液注入石墨炉中,加入基体改进剂,石墨炉原子吸收光谱法测定生物样品中铬.在优化的试验条件下,方法的检出限(3σ)为0.5 pg·L-1.铬的质量浓度在50 μg·L-1以内呈线性关系,回归方程为A=0.2521 C 0.0311,样品加标回收率为98.6%~103.2%.  相似文献   

10.
对石墨炉原子吸收光谱法测定地球化学样品中痕量银进行了研究。样品经盐酸、硝酸、硫酸、高氯酸溶解,在盐酸(1.2mol/L)介质中用醋酸丁酯萃取银与二苯硫脲螯合物,用石墨炉原子吸收光谱法测定地球化学样品中痕量银,方法检出限为0.011ng/mL,相对标准偏差(RSD,n=11)为6.0%12.2%,加标回收率为96.00%12.2%,加标回收率为96.00%105.00%。能满足地球化学样品中银含量为0.02105.00%。能满足地球化学样品中银含量为0.025μg/g范围内银测定的准确度和精密度的要求。  相似文献   

11.
通过集成在线富集和在线热消解技术,建立了基于微波等离子体原子发射光谱法(MP-AES)的地表水中重金属的在线检测技术,对珠江干流之一的西江水样中重金属元素(Cd,Cu,Cr,Ni,Pb,Fe,Mn和Zn)进行现场同时在线监测。结果表明,该在线检测技术对这些重金属元素的定量检测能力满足地表水环境质量标准(GB 3838-2002)的限量要求;据环境标准样品中重金属元素分析结果,测定值与配制标准值一致;自来水加标样品的回收率为81.5%~102%。该检测技术对重金属的检出限为1.14~5.34μg/L,检测结果的相对标准偏差(RSD)为0.79%~9.4%,方法可满足地表水中重金属的现场、快速、连续、准确监测需求。  相似文献   

12.
建立了自动消解仪消解-电感耦合等离子体原子发射光谱法(ICP-OES)同时测定水系沉积物中Cu,Zn,Ni,Cr,Pb,Co 6种元素含量的方法。方法中6种元素的检出限为0.000 2~0.02mg/L,工作曲线的相关系数均大于0.999。方法经国家标准物质(GBW07361)验证,准确度和精密度均能达到环境监测分析的要求,为水系沉积物中重金属元素含量的测定提供了简单可靠的分析方法。  相似文献   

13.
A novel, highly sensitive method for the simultaneous separation and determination of lead, copper, cadmium and other transition metals in drinking water was achieved by on-line sample pretreatment of chelation ion chromatography. Manganese, which coeluted with cadmium, was oxidized to permanganate by ammonium persulfate before injection. Permanganate, with bulk quantity of alkali, alkaline earth metals, iron and aluminum, was eliminated by pyrophosphoric acid–ammonium acetate buffer solution (pH 5.5), while retaining heavy and transition metals on a selective chelating resin (MetPac CC-1 column). Then, they were disabsorbed and transferred to a sulfonated cation exchanger (TMC-1 column). Finally, the concentrated trace metals were separated on a bifunctional ion-exchange column (CS5A) by a concentration gradient of oxalic acid and sodium nitrate eluents, coupled with post-column spectrophotometric detection with 2-[(5-bromo-2-pyridyl)azo]-5-diethylaminophenol (5-Br-PADAP) at 560 nm. The separation and color-development conditions were optimized. The detection limits for the method (signal-to-noise ratio=3:1) were at or below the μg l−1 level. The results of drinking water analyses were satisfactory.  相似文献   

14.
Heavy metals in drinking water have become a severe threat to human health. Detection of heavy metals has been achieved by electrochemical sensors that are modified with complex nanocomposites; however, reproducibility of these sensors is still a big challenge when applied in commercial settings. Here, a simple, very robust, and sensitive electrochemical sensor based on a screen-printed carbon electrode modified with butterfly-shaped silver nanostructure (AgNS/SPCE) has been developed for the concurrent determination of cadmium (II), lead (II), copper (II), and mercury (II) in water samples. The electrochemical behavior of the modified electrodes was investigated using cyclic voltammetry and differential pulse anodic stripping voltammetry. The AgNS/SPCE showed distinct peak potentials and a significant increase in the peak currents for all heavy metals, attributed to the high electrical conductivity and electrocatalytic activity of the synthesized butterfly-shaped AgNS. Moreover, the excellent stability and sensitivity towards simultaneous quantification of heavy metals have been obtained with detection limits of 0.4 ppb, 2.5 ppb, 7.3 ppb, and 0.7 ppb for Cd (II), Pb (II), Cu (II), and Hg (II), respectively. Besides, the constructed sensor was successfully applied to simultaneously quantify target heavy metals in spiked water samples. Owing to excellent sensitivity, high robustness, affordability, and fast response, the presented electrochemical sensor could be incorporated into a portable and miniaturized potentiostat device, making it a promising method for on-site water analysis.  相似文献   

15.
A novel electrochemical cell design is proposed to allow fast, reproducible and highly efficient convective transport of dissolved substances to screen‐printed electrochemical three‐electrode strips mounted on miniaturized plastic vessels, with the goal of improving detection limits in disposable electrochemical stripping field sensors. The experimental configuration has been tested for accumulation of the selected heavy metals ions Zn(II), Cd(II), and Pb(II), codeposited with bismuth ions on a carbon disk screen‐printed working electrode before detection by square wave anodic stripping voltammetry. Chemical and instrumental variables of the proposed device and associate electrochemical method were optimized. Selected parameters gave detection limits in the low ng mL?1 range with moderate deposition time (120 s). Practical applicability was tested on certified water and real samples (tap water and waste water), with acceptable results, suggesting potential usefulness for field environmental monitoring of heavy metals.  相似文献   

16.
Cyanide is a regulated contaminant in drinking water in the United States. This paper describes an ion chromatography method with pulsed amperometric detection (PAD) that directly determines free cyanide in drinking water. Samples are treated with sodium hydroxide to stabilize cyanide and with a cation-exchange cartridge to remove transition metals. Cyanide is separated by anion-exchange chromatography and detected by PAD with a waveform optimized for cyanide and used with a disposable silver working electrode. The recovery of cyanide spiked into five water samples was >80%. With an MDL of 1.0 microg/L, this method determines cyanide concentrations well below the reporting limits for free cyanide in drinking water.  相似文献   

17.
An isotope dilution mass spectrometric (IDMS) method has been developed for the simultaneous determination of the complexes of 11 heavy metals (Ag, Cd, Cu, Mo, Ni, Pb, Tl, U, W, Zn and Zr) with humic substances (HS) by coupling HPLC with ICP-MS and applying the on-line isotope dilution technique. The HPLC separation was carried out with size exclusion chromatography. This HPLC/ICP-IDMS method was applied to samples from a brown water, ground water, sewage and seepage water as well as for a sample containing isolated fulvic acids. The total contents of heavy metals and of their complexes were analyzed in these samples with detection limits in the range of 5–110 ng/L. The analysis of heavy metal/HS complexes from the different waters resulted in characteristic fingerprints of the distribution pattern of heavy metals in the separated HS fractions. A comparison between the total heavy metal concentrations and their portions bound to humic substances showed distinct differences for the various metals. Simultaneous 12C detection was used for the characterization of HS complexes not identified by UV detection and for the determination of relative DOC concentrations of chromatographic peaks. Received: 21 February 1997 / Revised: 27 May 1997 / Accepted: 28 May 1997  相似文献   

18.
Tap water samples (Assiut city, lie in the middle north of upper Egypt, approx. 370 km from Cairo, January-March, 2002) were taken from the eight sampling sites of different locations at Assiut city. The samples are analyzed to determine the total content of cadmium, copper, lead and zinc by differential pulse anodic stripping voltammetry (DPASV) while nickel and cobalt are determined by a new simple differential pulse adsorptive stripping voltammetry (DPAdSV), using dimethylglyoxime (DMG) as the complexing agent. This method uses sodium sulfite as the supporting electrolyte, which facilitates the removal of oxygen interference without the traditional necessity of purging with inert gas. The effect of various parameters was studied using DPASV (for Cd, Pb, Cu and Zn) and AdSV (for Ni and Co) methods. Subsequently, under the so found experimental conditions, the stability of calibration curves and the detection limits (μg/l) have been determined. The data achieved (for all metals utility) are comparable to those measured by the graphite furnace atomic absorption spectrophotometric (GF-AAS) method. The effects of the interferences between these metal ions have been investigated. Moreover, the effect of storage was discussed and the obtained results were compared favorably with standard official methods. Statistical analysis of the database exhibits applicability and the accuracy of the techniques. The results obtained from the two techniques (Voltammetry and GF-AAS) are in very good agreements in the most tap water samples.  相似文献   

19.
Neuhold CG  Wang J  do Nascimento VB  Kalcher K 《Talanta》1995,42(11):1791-1798
Strip-type, preconcentrating/voltammetric sensors, prepared by incorporating a cation-exchange resin within screen-printed carbon inks, are described. Such single-use strips combine the efficient electrostatic accumulation of heavy metals with the use of "mercury-free" surfaces. The uptake of copper(II) from dilute solutions (under open circuit conditions) is followed by voltammetric measurements in a separate blank solution. Various experimental variables have been optimized to yield low detection limits (e.g. 0.5 mug 1(-1) with 10 min accumulation) and good reproducibility (relative standard deviation, 2%). The applicability to assays of drinking water is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号