首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An important necessary condition for an exact relation for effective moduli of polycrystals to hold is stability of that relation under lamination. This requirement is so restrictive that it is possible (if not always feasible) to find all such relations explicitly. In order to do this one needs to combine the results developed in Part I of this paper and the representation theory of the rotation groups SO(2) and SO(3). More precisely, one needs to know all rotationally invariant subspaces of the space of material moduli. This paper presents an algorithm for finding all such subspaces. We illustrate the workings of the algorithm on the examples of 3‐dimensional elasticity, where we get all the exact relations, and the examples of 2‐dimensional and 3‐dimensional piezoelectricity, where we get some (possibly all) of them. (Accepted September 24, 1997)  相似文献   

2.
A fast convergent numerical model is developed to calculate the effective moduli of plates with various distributions and sizes of cracks, in which the crack line is divided into M parts to obtain the unknown traction on the crack line. When M=1, the model reduces to Kachanov's approximation method [Int. J. Solids Struct. 23 (1987) 23]. Six types of crack distributions and three kinds of crack sizes are considered, which are four regular (equilateral triangle, equilateral hexagon, rectangle, and diamond) and two random distributions (random location and orientation, and parallel orientation and random location), and one, two and random crack sizes. Some typical examples are also analyzed using the finite element method (FEM) to validate the present model. Then, the effective moduli associated with the crack distributions and sizes are calculated in detail. The present results for the regular distributions show some very interesting phenomena that have not been revealed before. And for the two random distributions, as the effective moduli depend on samples due to the randomness, the effect of the sample size and number are analyzed first. Then, effective moduli for plates with the three sizes of cracks are calculated. It is found that the effect of crack sizes on the effective moduli is significant for high crack densities, and small for low crack densities, and the random crack size leads to the lowest effective moduli. The present numerical results are compared with several popular micromechanics models to determine which one can provide the optimum estimation of the effective moduli of cracked plates with general crack densities. Furthermore, some existing numerical results are analyzed and discussed.  相似文献   

3.
We derive an evolution equation for the motions of patches of vorticity (vortex). Steady state solutions of this equation that include those of Kirchhoff and Moore & Saffman are established. The m-fold symmetric, m3, hypotrochoid is an exact steady solution of this equation when rotation and strain are present. When strain is absent but rotation is present, the m-fold symmetric, m2, hypotrochoid is a perturbation solution with a dispersion relation extending that of Lamb. The case of m=2 is exact and is the Kirchhoff elliptical vortex.  相似文献   

4.
5.
In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn ’t need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi ’s transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.  相似文献   

6.
We study the macroscopic mechanical behavior of materials with microscopic holes or hard inclusions. Specifically, we deal with the effective elastic moduli of composites whose microgeometry consists of either soft or hard isolated inclusions surrounded by an elastic matrix. We approach this problem by taking the stiffness of the inclusion phase to be a complex variable, which we eventually evaluate at the soft or hard limits. Our main result states that there is a certain class of non-physical, negative-definite values of the elastic moduli of the inclusion phase for which the effective tensor does not have infinities or become otherwise singular.We present applications of this result to the estimation of effective moduli and to homogenization theorems. The first application involves using complexanalytic methods to obtain rigorous and accurate bounds on the effective moduli of the high-contrast composites under consideration. We also discuss the variational estimates of Rubenfeld & Keller, which yield a complementary set of bounds on these moduli. The best bounds are given by a combination of the analytical and variational results. As a second application, we show that certain known theorems of homogenization for materials with holes are simple consequences of our main result, and in this connection we establish corresponding new theorems for materials with hard inclusions. While our rederivation of the homogenization theorems for materials with holes can be closely related to other known constructions, it appears that certain elements provided by our main result are essential in the proof of homogenization for the hard-inclusion case.  相似文献   

7.
Summary  The problem of the extension of subinterface microcracks in an infinite metal/ceramic bimaterial solid is studied. For the microcrack growth, the values of the M-integral are calculated under the assumption of a self-similar growth. First, the role that the M-integral plays in a metal/ceramic bimaterial solid with growing subinterface cracks is analyzed. It is concluded that an inherent relation exists between the value of the M-integral and the decrease of the effective elastic moduli for a bimaterial solid with growing subinterface microcracks. Second, it is concluded that mutual amplification and shielding effects exist during the microcrack extension, while they are substantially dependent on the increment of the microcrack length as well as the geometry of the microcrack arrangement under given loads. This strong mutual shielding effect of interacting microcracks makes the microcrack extension become increasingly difficult, and may stop the growth of the microcracks even under constant loads. Also, it is concluded that for a certain microcrack growth, the value of the M-integral in metal/ceramic bimaterial solid is always larger than that in homogeneous brittle solid for the same crack configuration. This means that the same microcrack growth in the former case shows lower stability than that in the latter one, due to the existence of a ductile phase. Received 3 May 2001; accepted for publication 27 June 2002 This work was supported by the Chinese National Nature Science Foundation (Grant 19472053) and supported by the Doctorate Foundation of Xi'an Jiaotong University (Grant DFXJU2000-15).  相似文献   

8.
Evaluation of molecular weight distribution from dynamic moduli   总被引:1,自引:0,他引:1  
A method to evaluate molecular weight distribution (MWD) from dynamic moduli is presented here. It relies on the least-square fitting of the dynamic data to a model whose parameters depend on the MWD. In particular, the analytical solution for the relaxation modulus previously obtained from the double reptation model, with the Tuminello step relaxation function and the Generalized Exponential Function (GEX) describing the MWD (Nobile and Cocchini 2000), has been used. A Finite Element Approximation (FEA) has been applied to calculate dynamic moduli from the relaxation modulus as a function of MWD. The sensitiveness of the GEX-double reptation dynamic moduli on the model parameters has also been investigated and the results show that large changes of the Mw/Mn ratio weakly affect the dynamic moduli, while small changes of the Mz/Mw ratio significantly deform the dynamic moduli curves. The use of rheological data to obtain MWD, by the model used in this paper, will, therefore, be able to give rather well defined Mz/Mw ratios, while more uncertainty will be presented in the Mw/Mn results. The so-called GEX-rheological model for the dynamic moduli was applied to fit the experimental data of different polymers in order to obtain the best-fit parameters of the MWD of these polymers, without the need for the inversion of the double reptation integral equation. The stability of the results has been confirmed through the evaluation of the 90% confidence intervals for the first molecular weight averages. Finally, concerning the Mw and Mz values, the predictions obtained from the dynamic moduli measurements differ by less than 10% from those obtained from GPC measurements while, as expected, more uncertainty is present in the Mn predictions. Received: 6 February 2000 Accepted: 22 August 2000  相似文献   

9.
In this paper we present a unified treatment of composite ellipsoid assemblages in the setting of uncoupled phenomena like conductivity and elasticity and coupled phenomena like thermoelectricity and piezomagnetoelectricity. The building block of this microgeometry is a confocal ellipsoidal particle consisting of a (possibly void) core and a coating. All space is filled up with such units which have different sizes but possess the same aspect ratios. The confocal ellipsoids may have the same orientation in space or may be randomly oriented. The resulting microgeometry simulates two-phase composites in which the reinforcing components are short fibers or elongated particles. Our main interest is in obtaining information of an exact nature on the effective moduli of this microgeometry whose effective tensor symmetry structure depends on the packing mode of the coated ellipsoids. This information will sometimes be complete like the full effective thermoelectric tensor of an assemblage which contains aligned ellipsoids in which the coating is isotropic and the core is arbitrarily anisotropic. In the majority of the cases however the maximum achievable exact information will be only partial and will appear in the form of certain exact relations between the effective moduli of the microgeometry. These exact relations are obtained from exact solutions for the fields in the microstructure for a certain set of loading conditions. In all the considered cases an isotropic coating can be combined with a fully arbitrary core. This covers the most important physical case of anisotropic fibers in an isotropic matrix. Allowing anisotropy in the coating requires the fulfillment of certain constraint conditions between its moduli. Even though in this case the presence of such constraint conditions may render the anisotropic coating material hypothetical, the value of the derived solutions remains since they still provide benchmark comparisons for approximate and numerical treatments. The remarkable feature of the general analysis which covers all treated uncoupled and coupled phenomena is that it is developed solely on the basis of potential solutions of the conduction problem in the same microgeometry.  相似文献   

10.
The stability of shock wave based on the definition of Landau and Lifschitz[1] is treated in this paper. This is tantamount to solving the problem of interaction of small disturbances with a shock wave. Small disturbances are introduced on both sides of a steady, non-dissipative, plane shock wave. Landau et al.[1] obtained the stability criterionM 1>1,M 2<1 for small disturbances which are travelling in the direction perpendicular to the shock wave. In the present paper, we assume that the small disturbances may be two dimensional, i.e. they may be propagating in the direction inclined to the shock wave. The conclusions obtained are: regardless of whether the incident wave and diverging wave are defined according to the direction of the phase velocity or the group velocity, the shock wave is unstable for some frequencies and longitudinal wave lengths of the disturbances, even if the conditionsM 1>1,M 2<1 are fulfilled. Then several experiments are proposed, and the problem of ways to define the incident wave and diverging wave is discussed. The meaning of this problem is illustrated. The same results can be obtained for the steady shock wave in a tube.  相似文献   

11.
The present paper derives the equation of motion for a class of nonholonomic dynamical systems from the d’Alembert–Lagrange equation. In this paper, the relation dδ = δd is assumed only for those generalized coordinates whose variations are independent. For the remaining coordinates, the transpositional relations are derived by means of mathematics method, which are different from the Chetaev condition. Several examples are given.  相似文献   

12.
 We consider here the problem of deriving rigorously, for well-prepared initial data and without any additional assumption, dissipative or smooth solutions of the incompressible Euler equations from renormalized solutions of the Boltzmann equation. This completes the partial results obtained by Golse [B. Perthame and L. Desvillettes eds., Series in Applied Mathematics 4 (2000), Gauthier-Villars, Paris] and Lions & Masmoudi [Arch. Rational Mech. Anal. 158 (2001), 195–211]. (Accepted June 6, 2002) Published online December 3, 2002 Communicated by Y. BRENIER  相似文献   

13.
. This paper is concerned with the initial‐boundary‐value problem for a nonlinear hyperbolic system of conservation laws. We study the boundary layers that may arise in approximations of entropy discontinuous solutions. We consider both the vanishing‐viscosity method and finite‐difference schemes (Lax‐Friedrichs‐type schemes and the Godunov scheme). We demonstrate that different regularization methods generate different boundary layers. Hence, the boundary condition can be formulated only if an approximation scheme is selected first. Assuming solely uniform bounds on the approximate solutions and so dealing with solutions, we derive several entropy inequalities satisfied by the boundary layer in each case under consideration. A Young measure is introduced to describe the boundary trace. When a uniform bound on the total variation is available, the boundary Young measure reduces to a Dirac mass. From the above analysis, we deduce several formulations for the boundary condition which apply whether the boundary is characteristic or not. Each formulation is based on a set of admissible boundary values, following the terminology of Dubois & LeFloch[15]. The local structure of these sets and the well‐posedness of the corresponding initial‐boundary‐value problem are investigated. The results are illustrated with convex and nonconvex conservation laws and examples from continuum mechanics. (Accepted July 2, 1998)  相似文献   

14.
We present convergence results for an adaptive algorithm to compute free energies, namely the adaptive biasing force (ABF) method (Darve and Pohorille in J Chem Phys 115(20):9169–9183, 2001; Hénin and Chipot in J Chem Phys 121:2904, 2004). The free energy is the effective potential associated to a so-called reaction coordinate ξ(q), where q = (q 1, … , q 3N ) is the position vector of an N-particle system. Computing free energy differences remains an important challenge in molecular dynamics due to the presence of metastable regions in the potential energy surface. The ABF method uses an on-the-fly estimate of the free energy to bias dynamics and overcome metastability. Using entropy arguments and logarithmic Sobolev inequalities, previous results have shown that the rate of convergence of the ABF method is limited by the metastable features of the canonical measures conditioned to being at fixed values of ξ (Lelièvre et al. in Nonlinearity 21(6):1155–1181, 2008). In this paper, we present an improvement on the existing results in the presence of such metastabilities, which is a generic case encountered in practice. More precisely, we study the so-called bi-channel case, where two channels along the reaction coordinate direction exist between an initial and final state, the channels being separated from each other by a region of very low probability. With hypotheses made on ‘channel-dependent’ conditional measures, we show on a bi-channel model, which we introduce, that the convergence of the ABF method is, in fact, not limited by metastabilities in directions orthogonal to ξ under two crucial assumptions: (i) exchange between the two channels is possible for some values of ξ and (ii) the free energy is a good bias in each channel. This theoretical result supports recent numerical experiments (Minoukadeh et al. in J Chem Theory Comput 6:1008–1017, 2010), where the efficiency of the ABF approach is demonstrated for such a multiple-channel situation.  相似文献   

15.
Permanent capillary gravity waves on the free surface of a two dimensional inviscid fluid of infinite depth are investigated. An application of the hodograph transform converts the free boundary-value problem into a boundary-value problem for the Cauchy-Riemann equations in the lower halfplane with nonlinear differential boundary conditions. This can be converted to an integro-differential equation with symbol –k 2+4|k|–4(1+), where is a bifurcation parameter. A normal-form analysis is presented which shows that the boundary-value problem can be reduced to an integrable system of ordinary differential equations plus a remainder term containing nonlocal terms of higher order for || small. This normal form system has been studied thoroughly by several authors (Iooss &Kirchgässner [8],Iooss &Pérouème [10],Dias &Iooss [5]). It admits a pair of solitary-wave solutions which are reversible in the sense ofKirchgässner [11]. By applying a method introduced in [11], it is shown that this pair of reversible solitary waves persists for the boundary-value problem, and that the decay at infinity of these solitary waves is at least like 1/|x|.  相似文献   

16.
Following the previous approach of Pham and Torquato (J Appl Phys 94:6591–6602, 2003) and Torquato (J Mech Phys Solids 45:1421–1448, 1997; Random heterogeneous media, Springer, Berlin, 2002), we derive the strong-contrast expansions for the effective elastic moduli K e,G e of d-dimensional multiphase composites. The series consists of a principal reference part and a fluctuation part (perturbation about a homogeneous reference or comparison material), which contains multi-point correlation functions that characterize the microstructure of the composite. We propose a three-point correlation approximation for the fluctuation part with an objective choice of the reference phase moduli, such that the fluctuation terms vanish. That results in the approximations for the effective elastic moduli of isotropic composites, which coincide with the well-known self-consistent and Maxwell approximations for two-phase composites having respective microstructures. Applications to some two-phase materials are given.  相似文献   

17.
The first special boundary value problem in the mechanics of deformable solids is considered to derive the effective constitutive relations for a heterogeneous inelastic body. The problem is reduced to a number of auxiliary boundary value problems for functions dependent on the shape of the body and on the form of constitutive relations. In the case of a layer of nonuniform thickness, the problem of finding the effective constitutive relations is reduced to an operator equation whose solution is sought by an iterative method of successive approximations. An approximate analytical formula is proposed to find the effective constitutive relations for a laminated composite on the basis of known inelastic constitutive relations for its components. This approximate formula takes into account the character of structural anisotropy in a laminated composite and, in the elastic case, yields the exact values of the effective elastic modulus.  相似文献   

18.
A sharpened version of an important property of perfect gases proved by Monleón Pradas & Pedregal[1] is proved here by exploiting fully the fact that every perfect gas has an entropy function. In this manner, the more advanced machinery of weak convergence employed in the earlier version is avoided, and a more elementary and accessible proof emerges. (Accepted March 10, 1997)  相似文献   

19.
This paper treats the hyperbolic-elliptic system of two conservation laws which describes the dynamics of an elastic material having a non-monotone strain-stress function. FollowingAbeyaratne &Knowles, we propose a notion of admissible weak solution for this system in the class of functions of bounded variation. The formulation includes an entropy inequality, a kinetic relation (imposed along any subsonic phase boundary) and an initiation criterion (for the appearance of new phase boundaries). We prove theL 1-continuous dependence of the solution to the Riemann problem. Our main result yields the existence and the stability of propagating phase boundaries. The proofs are based onGlimm's scheme and in particular on the techniques ofGlimm andLax. In order to deal with the kinetic relation, we prove a result of pointwise convergence of the phase boundary.  相似文献   

20.
The Stefan problem of a semi-infinite body with arbitrarily prescribed initial and boundary conditions is studied. One of the objectives of the paper is to investigate the analyticity of the solutions. For this purpose, the prescribed initial and boundary conditions are considered to be series of fractional powers of their arguments. It is found that the exact solutions of the problem for various forms of the initial and boundary conditions can be established in series of parabolic cylinder functions and time t. Existence and convergence of the series solutions are studied and proved. The present solutions include the known exact solutions as special cases. On the basis of the present solutions, the question of the analyticity of solutions of the Stefan problem, raised by Rubinstein in his book, can be answered. Conditions for analyticity of the solutions with various initial and boundary conditions are fully discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号