首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a circular r-colouring game on G, Alice and Bob take turns colouring the vertices of G with colours from the circle S(r) of perimeter r. Colours assigned to adjacent vertices need to have distance at least 1 in S(r). Alice wins the game if all vertices are coloured, and Bob wins the game if some uncoloured vertices have no legal colour. The circular game chromatic number χcg(G) of G is the infimum of those real numbers r for which Alice has a winning strategy in the circular r-colouring game on G. This paper proves that for any graph G, , where is the game colouring number of G. This upper bound is shown to be sharp for forests. It is also shown that for any graph G, χcg(G)≤2χa(G)(χa(G)+1), where χa(G) is the acyclic chromatic number of G. We also determine the exact value of the circular game chromatic number of some special graphs, including complete graphs, paths, and cycles.  相似文献   

2.
Suppose G is a graph and k,d are integers. The (k,d)-relaxed colouring game on G is a game played by two players, Alice and Bob, who take turns colouring the vertices of G with legal colours from a set X of k colours. Here a colour i is legal for an uncoloured vertex x if after colouring x with colour i, the subgraph induced by vertices of colour i has maximum degree at most d. Alice’s goal is to have all the vertices coloured, and Bob’s goal is the opposite: to have an uncoloured vertex without a legal colour. The d-relaxed game chromatic number of G, denoted by , is the least number k so that when playing the (k,d)-relaxed colouring game on G, Alice has a winning strategy. This paper proves that if G is an outerplanar graph, then for d≥6.  相似文献   

3.
We introduce the notion of weak acyclic coloring of a graph. This is a relaxation of the usual notion of acyclic coloring which is often sufficient for applications. We then use this concept to analyze the (a,b)-coloring game. This game is played on a finite graph G, using a set of colors X, by two players Alice and Bob with Alice playing first. On each turn Alice (Bob) chooses a (b) uncolored vertices and properly colors them with colors from X. Alice wins if the players eventually create a proper coloring of G; otherwise Bob wins when one of the players has no legal move. The (a,b)-game chromatic number of G, denoted (a,b)-χg(G), is the least integer t such that Alice has a winning strategy when the game is played on G using t colors. We show that if the weak acyclic chromatic number of G is at most k then (2,1)-.  相似文献   

4.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

5.
This paper investigates a competitive version of the coloring game on a finite graph G. An asymmetric variant of the (r,d)-relaxed coloring game is called the (r,d)-relaxed (a,b)-coloring game. In this game, two players, Alice and Bob, take turns coloring the vertices of a graph G, using colors from a set X, with |X|=r. On each turn Alice colors a vertices and Bob colors b vertices. A color αX is legal for an uncolored vertex u if by coloring u with color α, the subgraph induced by all the vertices colored with α has maximum degree at most d. Each player is required to color an uncolored vertex legally on each move. The game ends when there are no remaining uncolored vertices. Alice wins the game if all vertices of the graph are legally colored, Bob wins if at a certain stage there exists an uncolored vertex without a legal color. The d-relaxed (a,b)-game chromatic number, denoted by , of G is the least r for which Alice has a winning strategy in the (r,d)-relaxed (a,b)-coloring game.The (r,d)-relaxed (1,1)-coloring game has been well studied and there are many interesting results. For the (r,d)-relaxed (a,1)-coloring game, this paper proves that if a graph G has an orientation with maximum outdegree k and ak, then for all dk2+2k; If ak3, then (a,1)- for all d≥2k+1.  相似文献   

6.
Albert Guan 《Discrete Mathematics》2009,309(20):6044-6047
Given a (possibly improper) edge colouring F of a graph G, a vertex colouring of G is adapted toF if no colour appears at the same time on an edge and on its two endpoints. A graph G is called (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)|≥k for all v, and any edge colouring F of G, G admits a colouring c adapted to F where c(v)∈L(v) for all v. This paper proves that a planar graph G is adaptably 3-choosable if any two triangles in G have distance at least 2 and no triangle is adjacent to a 4-cycle.  相似文献   

7.
In the paper we introduce the new game—the unilateral \({\mathcal{P}}\) -colouring game which can be used as a tool to study the r-colouring game and the (r, d)-relaxed colouring game. Let be given a graph G, an additive hereditary property \({\mathcal {P}}\) and a set C of r colours. In the unilateral \({\mathcal {P}}\) -colouring game similarly as in the r-colouring game, two players, Alice and Bob, colour the uncoloured vertices of the graph G, but in the unilateral \({\mathcal {P}}\) -colouring game Bob is more powerful than Alice. Alice starts the game, the players play alternately, but Bob can miss his move. Bob can colour the vertex with an arbitrary colour from C, while Alice must colour the vertex with a colour from C in such a way that she cannot create a monochromatic minimal forbidden subgraph for the property \({\mathcal {P}}\) . If after |V(G)| moves the graph G is coloured, then Alice wins the game, otherwise Bob wins. The \({\mathcal {P}}\) -unilateral game chromatic number, denoted by \({\chi_{ug}^\mathcal {P}(G)}\) , is the least number r for which Alice has a winning strategy for the unilateral \({\mathcal {P}}\) -colouring game with r colours on G. We prove that the \({\mathcal {P}}\) -unilateral game chromatic number is monotone and is the upper bound for the game chromatic number and the relaxed game chromatic number. We give the winning strategy for Alice to play the unilateral \({\mathcal {P}}\) -colouring game. Moreover, for k ≥  2 we define a class of graphs \({\mathcal {H}_k =\{G|{\rm every \;block \;of\;}G \; {\rm has \;at \;most}\; k \;{\rm vertices}\}}\) . The class \({\mathcal {H}_k }\) contains, e.g., forests, Husimi trees, line graphs of forests, cactus graphs. Let \({\mathcal {S}_d}\) be the class of graphs with maximum degree at most d. We find the upper bound for the \({\mathcal {S}_2}\) -unilateral game chromatic number for graphs from \({\mathcal {H}_3}\) and we study the \({\mathcal {S}_d}\) -unilateral game chromatic number for graphs from \({\mathcal {H}_4}\) for \({d \in \{2,3\}}\) . As the conclusion from these results we obtain the result for the d-relaxed game chromatic number: if \({G \in \mathcal {H}_k}\) , then \({\chi_g^{(d)}(G) \leq k + 2-d}\) , for \({k \in \{3, 4\}}\) and \({d \in \{0, \ldots, k-1\}}\) . This generalizes a known result for trees.  相似文献   

8.
This paper studies the game chromatic number and game colouring number of the square of graphs. In particular, we prove that if G is a forest of maximum degree Δ≥9, then , and there are forests G with . It is also proved that for an outerplanar graph G of maximum degree Δ, , and for a planar graph G of maximum degree Δ, .  相似文献   

9.
The total chromatic number χT(G) is the least number of colours needed to colour the vertices and edges of a graph G such that no incident or adjacent elements (vertices or edges) receive the same colour. The Total Colouring Conjecture (TCC) states that for every simple graph G, χT(G)?Δ(G)+2. This work verifies the TCC for powers of cycles even and 2<k<n/2, showing that there exists and can be polynomially constructed a (Δ(G)+2)-total colouring for these graphs.  相似文献   

10.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

11.
The excess of a graph G is defined as the minimum number of edges that must be deleted from G in order to get a forest. We prove that every graph with excess at most k has chromatic number at most and that this bound is tight. Moreover, we prove that the oriented chromatic number of any graph with excess k is at most k+3, except for graphs having excess 1 and containing a directed cycle on 5 vertices which have oriented chromatic number 5. This bound is tight for k?4.  相似文献   

12.
For a connected graph G and any two vertices u and v in G, let D(u,v) denote the length of a longest u-v path in G. A hamiltonian coloring of a connected graph G of order n is an assignment c of colors (positive integers) to the vertices of G such that |c(u)−c(v)|+D(u,v)≥n−1 for every two distinct vertices u and v in G. The value of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number of G is taken over all hamiltonian colorings c of G. In this paper we discuss the hamiltonian chromatic number of graphs G with . As examples, we determine the hamiltonian chromatic number for a class of caterpillars, and double stars.  相似文献   

13.
A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 [M.D. Plummer, B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515] conjectured that for any 3-connected plane graph G with maximum face degree Δ. It is known that the conjecture holds true for Δ≤4 and Δ≥24. The validity of the conjecture is proved in the paper for Δ≥18.  相似文献   

14.
Charles Dunn 《Order》2012,29(3):507-512
Let k be a positive integer, d be a nonnegative integer, and G be a finite graph. Two players, Alice and Bob, play a game on G by coloring the uncolored vertices with colors from a set X of k colors. At all times, the subgraph induced by a color class must have maximum degree at most d. Alice wins the game if all vertices are eventually colored; otherwise, Bob wins. The least k such that Alice has a winning strategy is called the d-relaxed game chromatic number of G, denoted ?? g d (G). It is known that there exist graphs such that ?? g 0(G)?=?3, but ?? g 1(G)?>?3. We will show that for all positive integers m, there exists a complete multipartite graph G such that m?????? g 0(G)?<??? g 1(G).  相似文献   

15.
For graphs G and H, let GH denote their Cartesian sum. We investigate the chromatic number and the circular chromatic number for GH. It has been proved that for any graphs G and H, . It has been conjectured that for any graphs G and H, . We confirm this conjecture for graphs G and H with special values of χc(G) and χc(H). These results improve previously known bounds on the corresponding coloring parameters for the Cartesian sum of graphs.  相似文献   

16.
For a graph G on n vertices with chromatic number χ(G), the Nordhaus-Gaddum inequalities state that , and . Much analysis has been done to derive similar inequalities for other graph parameters, all of which are integer-valued. We determine here the optimal Nordhaus-Gaddum inequalities for the circular chromatic number and the fractional chromatic number, the first examples of Nordhaus-Gaddum inequalities where the graph parameters are rational-valued.  相似文献   

17.
The energy of a graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of G. Let G be a graph of order n and be the rank of the adjacency matrix of G. In this paper we characterize all graphs with . Among other results we show that apart from a few families of graphs, , where n is the number of vertices of G, and χ(G) are the complement and the chromatic number of G, respectively. Moreover some new lower bounds for E(G) in terms of are given.  相似文献   

18.
We introduce the incidence game chromatic number which unifies the ideas of game chromatic number and incidence coloring number of an undirected graph. For k-degenerate graphs with maximum degree Δ, the upper bound 2Δ+4k−2 for the incidence game chromatic number is given. If Δ≥5k, we improve this bound to the value 2Δ+3k−1. We also determine the exact incidence game chromatic number of cycles, stars and sufficiently large wheels and obtain the lower bound for the incidence game chromatic number of graphs of maximum degree Δ.  相似文献   

19.
A (d,1)-total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d. The span of a (d,1)-total labelling is the maximum difference between two labels. The (d,1)-total number, denoted , is defined to be the least span among all (d,1)-total labellings of G. We prove new upper bounds for , compute some for complete bipartite graphs Km,n, and completely determine all for d=1,2,3. We also propose a conjecture on an upper bound for in terms of the chromatic number and the chromatic index of G.  相似文献   

20.
The Hall-ratio ρ(G) of a graph G is the ratio of the number of vertices and the independence number maximized over all subgraphs of G. The ultimate lexicographic Hall-ratio of a graph G is defined as , where G°n denotes the nth lexicographic power of G (that is, n times repeated substitution of G into itself). Here we prove the conjecture of Simonyi stating that the ultimate lexicographic Hall-ratio equals the fractional chromatic number for all graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号