首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
光谱分析采样数据重建原始信号   总被引:2,自引:0,他引:2  
用光谱分析方法分析信号的采样与恢复。用三个改进的升余弦脉冲构造对称的限带频谱F(ω),经理论推导获得时域信号f(t)。采用梳状函数δT(t)对f(t)采样,调节T值,获得Shannon采样。应用快速傅里叶变换,计算采样的频谱Fd(ω),比较计算频谱Fd(ω)与限带频谱F(ω)的差别,讨论由采样频谱Fd(ω)重建f(t)的方法。结果发现:计算频谱Fd(ω)与限带频谱F(ω)非常相似,由采样数据可以在时域直接重建原始信号,而由频谱数据经快速逆傅里叶变换,同样能准确重建原始信号。因此,信号存储,既可以存储其采样信号,也可以存储采样信号的数字频谱。  相似文献   

2.
NMR relaxation-derived spectral densities provide information on molecular and internal motions occurring on the picosecond to nanosecond time scales. Using (13)C and (15)N NMR relaxation parameters [T(1), T(2), and NOE] acquired at four Larmor frequencies (for (13)C: 62.5, 125, 150, and 200 MHz), spectral densities J(0), J(omega(C)), J(omega(H)), J(omega(H) + omega(C)), J(omega(H) - omega(C)), J(omega(N)), J(omega(H) + omega(N)), and J(omega(H) - omega(N)) were derived as a function of frequency for (15)NH, (13)C(alpha)H, and (13)C(beta)H(3) groups of an alanine residue in an alpha-helix-forming peptide. This extensive relaxation data set has allowed derivation of highly defined (13)C and (15)N spectral density maps. Using Monte Carlo minimization, these maps were fit to a spectral density function of three Lorentzian terms having six motional parameters: tau(0), tau(1), tau(2), c(0), c(1), and c(2), where tau(0), tau(1) and tau(2) are correlation times for overall tumbling and for slower and faster internal motions, and c(0), c(1), and c(2) are their weighting coefficients. Analysis of the high-frequency portion of these maps was particularly informative, especially when deriving motional parameters of the side-chain methyl group for which the order parameter is very small and overall tumbling motions do not dominate the spectral density function. Overall correlation times, tau(0), are found to be in nanosecond range, consistent with values determined using the Lipari-Szabo model-free approach. Internal motional correlation times range from picoseconds for methyl group rotation to nanoseconds for backbone N-H, C(alpha)-H, and C(alpha)-C(beta) bond motions. General application of this approach will allow greater insight into the internal motions in peptides and proteins.  相似文献   

3.
Dai X  Xiang T  Ng TK  Su Z 《Physical review letters》2000,85(14):3009-3012
We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency omega(J) = 2eV when omega(J) is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an ac voltage, the tunneling current noise shows a series of characteristic peaks with increasing dc voltage. Experimental observation of these peaks will give direct evidence of the pair fluctuation in the normal state of high- T(c) superconductors and the pair decay rate can be estimated from the half width of the peaks.  相似文献   

4.
The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We find clear evidence for deviations from omega k scaling of the conductivity towards omega k/T scaling at low Matsubara frequencies omega k. By careful analytic continuation using Padé approximants we show that this behavior carries over to the real frequency axis where the conductivity scales with omega/T at small frequencies and low temperatures. We estimate the universal dc conductivity to be sigma* = 0.45(5)Q2/h, distinct from previous estimates in the T = 0, omega/T > 1 limit.  相似文献   

5.
Equations for the temperature dependence of the spectral densities J(is)(m)(momega(I) +/-omega(T)), where m=1, 2, omega(I) and omega(T) are the resonance and tunnel splitting angular frequencies, in the presence of a complex motion, have been derived. The spin pairs of the protons or deuterons of the methyl group perform a complex motion consisting of three component motions. Two of them involve mass transportation over the barrier and through the barrier. They are characterized by k((H)) (Arrhenius) and k((T)) (Schr?dinger) rate constants, respectively. The third motion causes fluctuations of the frequencies (nomega(I)+/-omega(T)) and it is related to the lifetime of the methyl spin at the energy level influenced by the rotor-bath interactions. These interactions induce rapid transitions, changing the symmetry of the torsional sublevels either from A to E or from E(a) to E(b). The correlation function for this third motion (k((omega)) rate constant) has been proposed by Müller-Warmuth et al. The spectral densities of the methyl group hindered rotation (k((H)), k((T)) and k((omega)) rate constants) differ from the spectral densities of the proton transfer (k((H)) and k((T)) rate constants) because three compound motions contribute to the complex motion of the methyl group. The recently derived equation [Formula: see text] , where [Formula: see text] and [Formula: see text] are the fraction and energy of particles with energies from zero to E(H), is taken into account in the calculations of the spectral densities. This equation follows from Maxwell's distribution of thermal energy. The spectral densities derived are applied to analyse the experimental temperature dependencies of proton and deuteron spin-lattice relaxation rate in solids containing the methyl group. A wide range of temperatures from zero Kelvin up to the melting point is considered. It has been established that the motion characterized by k((omega)) influences the spin-lattice relaxation up to the temperature T(tun) only. This temperature is directly determined by the equation C(p)T=E(H) (thermal energy=activation energy), where C(p) is the molar heat capacity. Probably the cessation of the third motion is a result of the de Broglie wavelength related to this motion becoming too short. As shown recently, the potential barrier can be an obstacle for the de Broglie wave. The theoretical equations derived in this paper are compared to those known in the literature.  相似文献   

6.
We report the first measurement of the dynamical response of shot noise (measured at frequency omega) of a tunnel junction to an ac excitation at frequency omega0. The experiment is performed in the quantum regime, variant Planck's over 2piomega approximately variant Planck's over 2piomega0>kBT at very low temperature T=35 mK and high frequency omega0/2pi=6.2 GHz. We observe that the noise responds in phase with the excitation, but not adiabatically. The results are in very good agreement with a prediction based on a new current-current correlator.  相似文献   

7.
The shot noise in long diffusive superconductor-normal-metal-superconductor contacts is calculated using the semiclassical approach. At low frequencies and for purely elastic scattering, the voltage dependence of the noise is of the form S(I) = (4Delta+2eV)/3R. The electron-electron scattering suppresses the noise at small voltages resulting in vanishing noise yet infinite dS(I)/dV at V = 0. The distribution function of electrons consists of a series of steps, and the frequency dependence of noise exhibits peculiarities at omega = neV, omega = neV-2Delta, and omega = 2Delta-neV for integer n.  相似文献   

8.
We propose a scheme of measuring the non-Gaussian character of noise by a hysteretic Josephson junction in the macroscopic quantum tunneling regime. We model the detector as an (under)damped LC resonator. It transforms Poissonian charge injection into current through the detector, which samples the injection statistics over a floating time window of length approximately Q/omega(J), where Q is the quality factor of the resonator and omega(J) its resonance frequency. This scheme ought to reveal the Poisson character of charge injection in a detector with realistic parameters.  相似文献   

9.
We report a neutron scattering study of the long-wavelength dynamic spin correlations in the model two-dimensional S = 1/2 square lattice Heisenberg antiferromagnets Sr2CuO2Cl2 and Sr2Cu3O4Cl2. The characteristic energy scale, omega(0)(T/J), is determined by measuring the quasielastic peak width in the paramagnetic phase over a wide range of temperature ( 0.2 less similarT/J less similar0.7). The obtained values for omega(0)(T/J) agree quantitatively between the two compounds and also with values deduced from quantum Monte Carlo simulations. The combined data show scaling behavior, omega approximately xi(-z), over the entire temperature range with z = 1.0(1), in agreement with dynamic scaling theory.  相似文献   

10.
The current noise of a voltage biased interacting quantum wire adiabatically connected to metallic leads is computed in the presence of an impurity in the wire. We find that in the weak backscattering limit the Fano factor characterizing the ratio between noise and backscattered current crucially depends on the noise frequency omega relative to the ballistic frequency vF/gL, where vF is the Fermi velocity, g is the Luttinger liquid interaction parameter, and L is the length of the wire. In contrast to chiral Luttinger liquids the noise is not only due to the Poissonian backscattering of fractionally charged quasiparticles at the impurity, but it also depends on Andreev-type reflections at the contacts, so that the frequency dependence of the noise needs to be analyzed to extract the fractional charge e*=eg of the bulk excitations.  相似文献   

11.
We have analyzed the constant loss contribution to the ac conductivity in the frequency range 10 Hz-1 MHz and temperatures down to 8 K, for two Li ionic conductors, one crystalline (Li(0.18)La(0.61)TiO(3)) and the other glassy (61SiO(2);35Li(2)O.3Al(2)O3.P(2)O(5)). As temperature is increased a crossover is observed from a nearly constant loss to a fractional power law frequency dependence of the ac conductivity. At any fixed frequency omega, this crossover occurs at a temperature T such that omega approximately nu(0)exp(-E(m)/k(B)T), where nu(0) is the attempt frequency and E(m) is identified with the barrier for Li+ ions to leave their wells.  相似文献   

12.
A novel approach is described to analyze NMR relaxation data on proteins. This method introduces the frequency-dependent order parameter, S(2)(omega), in order to estimate contributions to the generalized order parameter S(2) from different motional frequencies occurring on the picosecond to nanosecond time scales. S(2)(omega) is defined as the sum of a specified set of weighting coefficients from the Lorentzian expansion of the spectral density function. 15N NMR relaxation data (500, 600, and 800 MHz) on protein GB1 exemplify the method. Using this approach provides information on motional restrictions over specific frequency or time scale ranges and provides a normalized comparison of motional restrictions between proteins having different overall tumbling correlation times.  相似文献   

13.
The behavior of seismicity in the area candidate to suffer a main shock is investigated after the observation of the Seismic Electric Signal activity until the impending main shock. This is based on the view that the occurrence of earthquakes is a critical phenomenon to which statistical dynamics may be applied. In the present work, analysing the time series of small earthquakes, the concept of natural time chi was used and the results revealed that the approach to criticality itself can be manifested by the probability density function (PDF) of kappa(1) calculated over an appropriate statistical ensemble. Here, kappa(1) is the variance kappa(1)(=-(2)) resulting from the power spectrum of a function defined as Phi(omega)= summation operator(k=1)(N) p(k) exp(iomegachi(k)), where p(k) is the normalized energy of the k-th small earthquake and omega the natural frequency. This PDF exhibits a maximum at kappa(1) asymptotically equal to 0.070 a few days before the main shock. Examples are presented, referring to the magnitude 6 approximately 7 class earthquakes that occurred in Greece.  相似文献   

14.
We propose that the photonic band structure (PBS) of semiconductor-based photonic crystals (PCs) can be made tunable if the free-carrier density is sufficiently high. In this case, the dielectric constant of the semiconductor, modeled as varepsilon(omega) = varepsilon(0)(1-omega(2)(p)/omega(2)), depends on the temperature T and on the impurity concentration N through the plasma frequency omega(p). Then the PBS is strongly T and N dependent; it is even possible to obliterate a photonic band gap. This is shown by calculating the 2D PBS for PCs that incorporate either intrinsic InSb or extrinsic Ge.  相似文献   

15.
We use an electron thermometer to measure the temperature rise of approximately 2 x 10(5) electrons in a two-dimensional box, due to heat flow into the box through a ballistic one-dimensional (1D) constriction. Using a simple model we deduce the thermal conductance kappa(Vg) of the 1D constriction, which we compare to its electrical conductance characteristics; for the first four 1D subbands the heat carried by the electrons passing through the wire is proportional to its electrical conductance G(Vg). In the vicinity of the 0.7 structure this proportionality breaks down, and a plateau at the quantum of thermal conductance pi(2)k(2/B)T/3h is observed.  相似文献   

16.
17.
We discuss Bose-Einstein condensation (BEC) in quasi-2D trapped gases and find that well below the transition temperature T(c) the equilibrium state is a true condensate, whereas at intermediate temperatures T相似文献   

18.
The dynamic structure factor &Stilde;(k,omega) and the two-particle distribution function g(r,t) of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multiphonon excitation and absorption. The static radial two-particle distribution function g(r) is calculated for classical (T greater, similarPlanck's over 2piomega(p), where omega(p) is the ion plasma frequency) and quantum (T相似文献   

19.
A new approach to visualizing spectral densities and analyzing NMR relaxation data has been developed. By plotting the spectral density function, J(omega), as F(omega)=2 omega J(omega) on the log-log scale, the distribution of motional correlation times can be easily visualized. F(omega) is calculated from experimental data using a multi-Lorentzian expansion that is insensitive to the number of Lorentzians used and allows contributions from overall tumbling and internal motions to be separated without explicitly determining values for correlation times and their weighting coefficients. To demonstrate the approach, (15)N and (13)C NMR relaxation data have been analyzed for backbone NH and C(alpha)H groups in an alpha-helix-forming peptide 17mer and in a well-folded 138-residue protein, and the functions F(omega) have been calculated and deconvoluted for contributions from overall tumbling and internal motions. Overall tumbling correlation time distribution maxima yield essentially the same overall correlation times obtained using the Lipari-Szabo model and other standard NMR relaxation data analyses. Internal motional correlational times for NH and C(alpha)H bond motions fall in the range from 100 ps to about 1 ns. Slower overall molecular tumbling leads to better separation of internal motional correlation time distributions from those of overall tumbling. The usefulness of the approach rests in its ability to visualize spectral densities and to define and separate frequency distributions for molecular motions.  相似文献   

20.
Only 3% hole doping by Li is sufficient to suppress the long-range three-dimensional (3D) antiferromagnetic order in La2CuO4. The spin dynamics of such a 2D spin liquid state at T相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号