首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Using the zero mode method, we compute the conductance of a wire consisting of a magnetic impurity coupled to two Luttinger liquid leads characterized by the Luttinger exponent alpha(>or=1). We find for resonance conditions, in which the Fermi energy of the leads is close to a single particle energy of the impurity, that the conductance as a function of temperature is G approximately equal (e(2)/h)(T/T(F))(2(alpha-2)), whereas for off-resonance conditions the conductance is G approximately equal (e(2)/h)(T/T(F))(2(alpha-1)). By applying either a gate voltage or a magnetic field or both, one of the spin components can be in resonance while the other is off resonance causing a strong asymmetry between the spin-up and spin-down conductances.  相似文献   

2.
We study the stability of the quantum-critical point for itinerant ferromagnets commonly described by the Hertz-Millis-Moriya (HMM) theory. We argue that in D相似文献   

3.
A model for thermally activated dynamics in disordered systems shows that the linear and nonlinear susceptibility follows a generic exponential form with a "critical rounding," chi(1) proportional to chi(3) proportional to [T ln(t/tau(0)')/K](gamma/b phi) exp - [Tt(g)(phi b)ln(t/tau(0)'/K)](nu/b) (T=temperature, t=time, K=barrier constant, t(g) = 1 - T(SG)/T, and T(SG) = transition temperature; gamma>0 for chi(3) and <0 for chi(1)). This model, also valid in the presence of resonant tunneling states at energies K(0) < K [provided that K is replaced by K(0)+2T ln (1/Gamma(0)), where Gamma(0)(2) proportional, variant tunnel splitting of a spin S=1], is potentially applicable to a wide variety of systems opening the way for the study of thermally activated quantum phase transitions. The famous spin-glass system LiHo(x)Y(1-x) seems to follow this model.  相似文献   

4.
Specific-heat experiments on single crystals of the S = 1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9H24N4)(NO2)ClO2 (NTENP) have been performed in magnetic fields applied both parallel and perpendicular to the spin chains. We have found for the parallel field configuration that the magnetic specific heat (C(mag)) is proportional to temperature (T) above a critical field H(c), at which the energy gap vanishes, in a temperature region above that of the long-range ordered state. The ratio C(mag)/T increases as the magnetic field approaches H(c) from above. The data are in good quantitative agreement with the prediction of the c= 1 conformal field theory in conjunction with the velocity of the excitations calculated by a numerical diagonalization, providing conclusive evidence for a Tomonaga-Luttinger liquid.  相似文献   

5.
The temperature dependences of nuclear magnetization and relaxation rates are reviewed theoretically and experimentally in order to quantify the effects of temperature on NMR signals acquired by common imaging techniques. Using common sequences, the temperature dependences of the equilibrium nuclear magnetization and relaxation times must each be considered to fully understand the effects of temperature on NMR images. The temperature dependence of the equilibrium nuclear magnetization is negative because of Boltzmann's distribution for all substances at all temperatures, but the combined temperature dependences of the equilibrium magnetization and relaxation can be negative, weak or positive depending on the temperature (T), echo time (T(E)), repetition time (T(R)), and the temperature dependences of the relaxation times T(1)(T) and T(2)(T) in a pulse sequence. As a result, the magnitude of the NMR signal from a given substance can decrease, increase or stay somewhat constant with increasing temperature. Nuclear thermal coefficients are defined and predictions for spin echo and other simple sequences are verified experimentally using a number of substances representing various thermal and NMR properties.  相似文献   

6.
A microscopic theory for rare-earth ferromagnetic hexaborides, such as Eu1-xCaxB6, is proposed on the basis of the double-exchange Hamiltonian. In these systems, the reduced carrier concentrations place the Fermi level near the mobility edge, introduced in the spectral density by the disordered spin background. We show that the transport properties such as the Hall effect, magnetoresistance, frequency dependent conductivity, and dc resistivity can be quantitatively described within the model. We also make specific predictions for the behavior of the Curie temperature T(C) as a function of the plasma frequency omega(p).  相似文献   

7.
We present highly sensitive Hall effect measurements of the heavy fermion compound CeCoIn5 down to temperatures of 55 mK. A pronounced dip in the differential Hall coefficient | partial differential rho(xy)/ partial differential H| at low temperature and above the upper critical field of superconductivity, H(c2), is attributed to critical spin fluctuations associated with the departure from Landau Fermi liquid behavior. This identification is strongly supported by a systematic suppression of this feature at elevated pressures. The resulting crossover line in the field-temperature phase diagram favors a field induced quantum critical point at mu(0)H(qc) approximately 4.1 T below H(c2)(T=0) suggesting related, yet separate, critical fields.  相似文献   

8.
《Physics letters. A》1998,242(3):130-138
We propose a phenomenological approach to quantum liquids of particles obeying generalized statistics of a fermionic type, in the spirit of the Landau Fermi liquid theory. The approach is developed for fractional exclusion statistics. We discuss both equilibrium (specific heat, compressibility, and Pauli spin susceptibility) and nonequilibrium (current and thermal conductivities, thermopower) properties. Low-temperature quantities have the same temperature dependences as for the Fermi liquid, with the coefficients depending on the statistics parameter. The novel quantum liquids provide an explicit realization of systems with a non-Fermi liquid Lorentz ratio in two and more dimensions. Consistency of the theory is verified by deriving the compressibility and f-sum rules.  相似文献   

9.
We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.  相似文献   

10.
We consider a gas of cold fermionic atoms having two spin components with interactions characterized by their s-wave scattering length a. At positive scattering length the atoms form weakly bound bosonic molecules which can be evaporatively cooled to undergo Bose-Einstein condensation, whereas at negative scattering length BCS pairing can take place. It is shown that, by adiabatically tuning the scattering length a from positive to negative values, one may transform the molecular Bose-Einstein condensate into a highly degenerate atomic Fermi gas, with the ratio of temperature to Fermi temperature T/T(F) approximately 10(-2). The corresponding critical final value of k(F)/a/, which leads to the BCS transition, is found to be about one-half, where k(F) is the Fermi momentum.  相似文献   

11.
We study the behavior of two archetypal quantum spin glasses at T = 0 by exact diagonalization techniques: the random Ising model in a transverse field and the random Heisenberg model. The behavior of the dynamical spin response is obtained in the spin-glass ordered phase. In both models it is gapless and has the general form chi(")(omega) = qdelta(omega)+chi(")(reg)(omega), with chi(")(reg)(omega) approximately omega for the Ising and chi(")(reg)(omega) approximately const for the Heisenberg, at low frequencies. The method provides new insight to the physical nature of the low-lying excitations.  相似文献   

12.
(13)C nuclear magnetic resonance measurements were performed on κ-(BEDT-TTF)(2)Cu(NCS)(2), with the external field placed parallel to the quasi-2D conducting layers. The absorption spectrum is used to determine the electronic spin polarization M(s) as a function of external field H at a temperature T=0.35 K. A discontinuity in the derivative dM(s)/dH at an applied field of H(s)=213±3 kOe is taken as evidence for a Zeeman-driven transition within the superconducting state and stabilization of inhomogeneous superconductivity.  相似文献   

13.
We discuss the magnetic response of clean Ag coated Nb proximity cylinders in the temperature range 150 &mgr;K相似文献   

14.
We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T(e) and the Fermi temperature T(F)~n(e)(2/3). In-flight compressions of Be and CH targets reach 6-13 times solid density, with T(e)/T(F)~0.4-0.7 and Γ(ii)~5, resulting in minimum adiabats of ~1.6-2. These measurements are consistent with low-entropy implosions and predictions by radiation-hydrodynamic modeling.  相似文献   

15.
Muon spin rotation ( &mgr;SR) measurements of the temperature dependence of the &mgr;(+) Knight shift in single crystals of U0. 965Th0.035Be13 have been used to study the static spin susceptibility chi(s) below the transition temperatures T(c1) and T(c2). While an abrupt reduction of chi(s) with decreasing temperature is observed below T(c1), chi(s) does not change below T(c2) and remains at a value below the normal-state susceptibility chi(n). In the normal state we find an anomalous anisotropic temperature dependence of the transferred hyperfine coupling between the &mgr;(+) spin and the U 5f electrons.  相似文献   

16.
Spin Hall effect (SHE) is studied with first-principles relativistic band calculations for platinum, which is one of the most important materials for metallic SHE and spintronics. We find that intrinsic spin Hall conductivity (SHC) is as large as approximately 2000(variant Planck's over 2 pi/e)(Omega cm)(-1) at low temperature and decreases down to approximately 200(variant Planck's over 2 pi/e)(Omega cm)(-1) at room temperature. It is due to the resonant contribution from the spin-orbit splitting of the doubly degenerated d bands at high-symmetry L and X points near the Fermi level. By modeling these near degeneracies by an effective Hamiltonian, we show that SHC has a peak near the Fermi energy and that the vertex correction due to impurity scattering vanishes. We therefore argue that the large SHE observed experimentally in platinum is of intrinsic nature.  相似文献   

17.
In response to recent nuclear-magnetic-resonance (NMR) measurements on the molecular cluster Mn12O12 acetate, we study the nuclear spin-lattice relaxation rate 1/T(1), developing a modified spin-wave theory. Our microscopic new approach, which is distinct from previous macroscopic treatments of the cluster as a rigid spin of S=10, not only excellently interprets the observed temperature and applied-field dependences of 1/T(1) for 55Mn nuclei but also strongly supports the 13C NMR evidence for spin delocalization over the entire molecule.  相似文献   

18.
We show that finite-size scaling techniques can be employed to study the glass transition. Our results follow from the postulate of a diverging dynamical correlation length at the glass transition whose physical manifestation is the presence of dynamical heterogeneities. We introduce a parameter B(T,L) whose temperature, T, and system size, L, dependences permit a precise location of the glass transition. We discuss the finite-size scaling behavior of a diverging susceptibility chi(L,T). These new techniques are successfully used to study two lattice models. The analysis straightforwardly applies to any glass-forming system.  相似文献   

19.
The unitarity regime of the BCS-BEC crossover can be realized by diluting a system of two-component lattice fermions with an on-site attractive interaction. We perform a systematic-error-free finite-temperature simulation of this system by diagrammatic determinant Monte Carlo method. The critical temperature in units of Fermi energy is found to be T(C)/epsilonF=0.152(7). We also report the behavior of the thermodynamic functions, and discuss the issues of thermometry of ultracold Fermi gases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号