首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
The influence of the surrounding semiconducting matrix upon the optical response of embedded nano-objects (quantum dots) has been investigated. This system can be described by means of a hybrid model, where the full response is a combination of a macroscopic electrostatic response term and a dynamic response term, obtained quantum mechanically. The result is a modified discrete dipole model, where excess discrete dipoles having an excess polarizability with respect to a uniform background identical to the dielectric host material represent the response. In this model all electrodynamic interactions are screened by the host material. The electrostatic response is obtained by approximating the quantum dots by embedded dielectric oblate ellipsoids. Closed expressions for the electrostatic response of these ellipsoids have been derived. The electrodynamic nature of the dynamic quantum mechanical polarizability term however is unclear. It is not certain whether this polarizability is dressed or bare. Therefore we have investigated in detail the consequences of both options. Although there is no real qualitative difference between them, the difference is so large that experiment can easily discriminate between both. Results should be easily measurable anyhow.  相似文献   

2.
The vibrational spectra of structures with InAs quantum dots in an AlGaAs matrix and AlAs quantum dots in an InAs matrix are investigated experimentally and theoretically. The Raman spectra exhibit features that correspond to transverse-optical (TO), longitudinal-optical (LO), and interface phonons. The frequencies of interface phonons in InAs and AlAs quantum dots and in an AlGaAs matrix with various concentrations of aluminum are calculated with the use of experimental values of transverse-and longitudinal-optical phonons in the approximation of a dielectric continuum. It is shown that the model of a dielectric continuum adequately describes the behavior of interface phonons in structures with quantum dots under the assumption that the quantum dots are spheroidal.  相似文献   

3.
Exciton energies as a function of radii of quantum dots in the range of 5-35 A are calculated based on effective mass approximation model with the B-spline technique and compared with experimental and other theoretical data for the CdS dots. This method leads to accurate and fast convergent exciton energy, which are in good agreement with experimental data in the whole confinement regime. The effect of penetration of wave function from the inside to the outside of the dots and the effect of dielectric constants are taken into account. The magnitudes of dynamical parameters are discussed. It is found that the different materials surrounding the CdS quantum dot affect not only the potential energy and Coulomb interaction energy of the system, but also the effective masses. The comparison shows that the effective mass approximation model can describe very well the quantum size effects observed experimentally on the exciton ground state energy.  相似文献   

4.
The exciton-longitudinal optical phonon interaction is theoretically investigated for the case of polar semiconductor cylindrical quantum dots embedded in semiconductor matrix. The theory is developed within the dielectric continuum model considering the Fröhlich interaction between electrons and confined bulk longitudinal optical phonons for a configurational interaction model of quantum dot. Representative longitudinal optical phonon mode for the exciton-phonon interaction is predicted for cylindrical InAs/GaAs quantum dots.  相似文献   

5.
Calculations for optical excitations in confined systems require knowledge of the inverse screening dielectric function epsilon(-1)(r,r(')), which plays a crucial role in determining exciton binding energies. We present a new efficient real-space method of inverting and storing large ab initio dielectric matrices of confined systems, which relies on the separability of epsilon matrix in r and r('). The method has allowed, for the first time, full ab initio calculation of epsilon(-1)(r,r(')) of dimension N approximately 270 000, and for quantum dots as large as Si35H36. The effective screening in Si quantum dots up to 1.1 nm in diameter is found to be very ineffective with average dielectric constants ranging from 1.1 to 1.4.  相似文献   

6.
Optical feedback due to mutual relation between local field effect and intersubband transition in quantum dots is investigated for the first time. In this regard, dielectric function of quantum dots is considered up to the third order of nonlinearity. It is found that near the resonance, the intensity inside the dot is a function of frequency, which is determined by the optical feedback. This effect changes the magnitude of optical nonlinearity and its symmetry around the transition energy. The results indicate that the magnitude of the dielectric function decreases at frequencies below the transition frequency because of concentration of electric field inside the dot and vice versa. It is also shown that this effect is enhanced by increasing the intensity and resonance contribution in the dielectric function.  相似文献   

7.
惠萍 《中国物理》2000,9(11):844-847
The B-spline technique is used in the calculation of the exciton ground state energy based on the effective mass approximation (EMA) model. The exciton is confined in CdSe microspherical crystallites with a finite-height potential wall (dots). In this approach, (a) the wave function is allowed to penetrate to the outside of the dots; (b) the dielectric constants of the quantum dot and the surrounding material are considered to be different; and (c) the dielectric constant of the dots are size-dependent. The exciton energies as functions of radii of the dots in the range 0.5-3.5 nm are calculated and compared with experimental and previous theoretical data. The results show that: (1) The exciton energy is convergent as the radius of the dot becomes very small. (2) A good agreement with the experimental data better than other theoretical results is achieved. (3) The penetration (or leaking) of the wave function and the difference of the dielectric constants in different regions are necessary for correcting the Coulomb interaction energy and reproducing experimental data. (4) The EMA model with B-spline technique can describe the status of excition confined in quantum dot very well.  相似文献   

8.
Samples of borosilicate glasses doped by CdS with concentrations smaller than 1% are studied. It is shown that, due to a disorder at interfaces of quantum dots, the main channels of emission of excitons by quantum dots are the annihilation of excitons in quantum and localized surface states, while the efficiency of interaction between the channels largely depends on the radius of quantum dots. It is found for the first time that states that form the second emission channel are not discrete energy levels in the band gap, as is usually assumed in some experimental and theoretical works, but rather form a quasi-continuous tail of the density of localized states. These localized states appear as a result of dangling bonds of outer atoms of quantum dots. Energy relaxation of carriers via localized states is the reason for a long response time of these structures to an external action and can be enhanced due to a polarization effect caused by different dielectric constants of materials of quantum dots and matrix.  相似文献   

9.
We present a theoretical study and discussion of computationally useful nanoelectronic circuits which use adaptive control methods both to achieve the circuit function and to compensate for unpredictable nonuniformities in the circuit environment. In the regime where the scaling of conventional digital electronics breaks down, nanoelectronic circuitry will be required to perform robustly in the presence of inevitable device–device interactions, sensitivity to circuit parameters of quantum devices, and deviations from ideal circuit design. To examine the role of adaption in addressing these issues, we focus on a specific class of scaleable circuit architectures composed of Coulombically interacting polarizable anisotropic quantum dots which include input polarization dots, output polarization dots, and an array of processing dots. We implement the adaptive control of these circuits by assuming that particular features of the processing dots such as energy barriers, charge, shape, or orientation can be experimentally modified. A method of adaptive feedback is used to modify the processing dots and produce desired correlations between the input and output dot polarizations as computed by the circuit. A variational quantum Monte Carlo method has been used to simulate the many-body response of model GaAs dot circuits in which the mutual orientation of the dots is adapted to successfully achieve different desired patterns of correlation. We demonstrate the robustness of the adaptive circuits for circuit nonuniformities and for sensitivity to circuit parameters due to quantum effects.  相似文献   

10.
The excitation and relaxation of spatially confined excitons in semiconductor quantum dots have been considered. The temperature dependence of the luminescence of quantum dots in dielectric matrices is described by the model taking into account the singlet-triplet intercombination conversion of spatially confined excitons. The analytical expression describing the temperature dependence of photoluminescence is derived and the physical meaning of the constants involved in this expression is determined. The applicability of the expression to the analysis of the luminescent properties of the quantum dots is demonstrated by the example of silicon nanoclusters in a thin-film SiO2 matrix.  相似文献   

11.
介绍了玻璃中的半导体量子点。对玻璃中半导体量子点的生长过程、量子的电子态,量子尺寸效应、库仑阻塞效应及介电效应,做了比较全面的介绍。讨论了量子点的应用及发展前景。  相似文献   

12.
A microscopic theory is used to study photoluminescence of semiconductor quantum dots under the influence of Coulomb and carrier-photon correlation effects beyond the Hartree-Fock level. We investigate the emission spectrum and the decay properties of the time-resolved luminescence from initially excited quantum dots. The influence of the correlations is included within a cluster expansion scheme up to the singlet-doublet level.  相似文献   

13.
Jian Zeng 《中国物理 B》2022,31(4):43202-043202
The strongly coupled system composed of atoms, molecules, molecule aggregates, and semiconductor quantum dots embedded within an optical microcavity/nanocavity with high quality factor and/or low modal volume has become an excellent platform to study cavity quantum electrodynamics (CQED), where a prominent quantum effect called Rabi splitting can occur due to strong interaction of cavity-mode single-photon with the two-level atomic states. In this paper, we build a new quantum model that can describe the optical response of the strongly-coupled system under the action of an external probing light and the spectral lineshape. We take the Hamiltonian for the strongly-coupled photon-atom system as the unperturbed Hamiltonian $\bm{H}$0 and the interaction Hamiltonian of the probe light upon the coupled-system quantum states as the perturbed Hamiltonian $\bm{V}$. The theory yields a double Lorentzian lineshape for the permittivity function, which agrees well with experimental observation of Rabi splitting in terms of spectral splitting. This quantum theory will pave the way to construct a complete understanding for the microscopic strongly-coupled system that will become an important element for quantum information processing, nano-optical integrated circuits, and polariton chemistry.  相似文献   

14.

The processes of excitation and relaxation of confined excitons in semiconductor quantum dots upon indirect high-energy excitation have been considered. The temperature behavior of photoluminescence of quantum dots in a SiO2 dielectric matrix has been described using a model accounting for the process of population of quantum-dot triplet states upon excitation transfer through mobile excitons of the matrix. Analytical expressions that take into account the two-stage and three-stage schemes of relaxation transitions have been obtained. The applicability of these expressions for analyzing fluorescence properties of semiconductor quantum dots has been demonstrated using the example of silicon and carbon nanoparticles in the thin-film SiO2 matrix. It has been shown that the complex character of the temperature dependences of the photoluminescence upon indirect excitation can be an indication of a multistage relaxation of excited states of the matrix and quantum dots. The model concepts developed in this study allow one to predict the form of temperature dependences of the photoluminescence for different schemes of indirect excitation of quantum dots.

  相似文献   

15.
Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.  相似文献   

16.
Optics and Spectroscopy - We discuss particular features of generation of surface plasmon polaritons in a metal–dielectric planar interface that is coupled to semiconductor quantum dots by...  相似文献   

17.
考虑了PbSe量子点介电限域效应对激子的影响,引入了修正因子,提出了一种新的量子点禁带宽度的计算模型.与实验数据比较,两者具有良好的一致性.尤其是在小尺寸量子点的情况下,修正后的模型与实验值表现出更好的一致性.通过调整受限势垒的大小,分析不同溶剂条件下PbSe禁带宽度的计算模型,说明采用的修正模型对溶剂的变化是不敏感的,与实验的结论是一致的.  相似文献   

18.
We study numerically and analytically a binary mixture of quantum dots exhibiting gain and loss. For a mixture of gain quantum dots and silver nanoparticles, we find conditions when the composite shows negative dielectric constant operation and lossless operation. The composites of this kind may be used for dense integration of photonic components as well as modulation and switching in optical interconnect systems L. Thylen is also at Dept of Microelectronics and Applied Physics, Royal Institute of Technology (KTH), 164 40 Kista, Sweden.  相似文献   

19.
We review and extend the composite fermion theory for semiconductor quantum dots in high magnetic fields. The mean-field model of composite fermions is unsatisfactory for the qualitative physics at high angular momenta. Extensive numerical calculations demonstrate that the microscopic CF theory, which incorporates interactions between composite fermions, provides an excellent qualitative and quantitative account of the quantum dot ground state down to the largest angular momenta studied, and allows systematic improvements by inclusion of mixing between composite fermion Landau levels (called Λ levels).  相似文献   

20.
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that, at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blockade peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency, and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号