首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over a large range of Rossby and Froude numbers, we investigate the dynamics of initially balanced decaying turbulence in a shallow rotating fluid layer. As in the case of incompressible two-dimensional decaying turbulence, coherent vortex structures spontaneously emerge from the initially random flow. However, owing to the presence of a free surface, a wealth of new phenomena appear in the shallow-water system. The upscale energy cascade, common to strongly rotating flows, is arrested by the presence of a finite Rossby deformation radius. Moreover, in contrast to near-geostrophic dynamics, a strong asymmetry is observed to develop as the Froude number is increased, leading to a clear dominance of anticyclonic vortices over cyclonic ones, even though no beta effect is present in the system. Finally, we observe gravity waves to be generated around the vortex structures, and, in the strongest cases, they appear in the form of shocks. We briefly discuss the relevance of this study to the vortices observed in Jupiter's atmosphere.  相似文献   

2.
We present a scaling theory for unforced inviscid two-dimensional turbulence. Our model unifies existing spatial and temporal scaling theories. The theory is based on a self-similar distribution of vortices of different sizes A. Our model uniquely determines the spatial and temporal scaling of the associated vortex number density which allows the determination of the energy spectra and the vortex distributions. We find that the vortex number density scales as n(A,t)-t(-2/3)/A, which implies an energy spectrum E-k(-5), significantly steeper than the classical Batchelor-Kraichnan scaling. High-resolution numerical simulations corroborate the model.  相似文献   

3.
We performed large-eddy simulations (LES) of forced impinging jets over smooth and rough surfaces, containing large-scale, azimuthal vortices generated by the enhanced primary instability in the jet shear layer. The interaction between these vortices and the turbulence in the wall jet that is formed downstream of the impingement region determines their rate of decay. To explore the surface-roughness effects on the evolution of the vortices, sand-grain-like surfaces are generated using uniformly distributed but randomly oriented ellipsoids. The flow is compared to our previous LES of jets impinging on a smooth surface. In spite of the severe modification caused by the roughness on the near-wall flow, the vortex development is not significantly altered. Slightly faster decay of the primary vortices is observed in the rough-wall case compared to the smooth-wall one; the secondary vortex that detaches from the wall and is lifted up has larger vorticity. The highly disturbed near-wall flow is advected outward and affects the evolution of the primary vortex for a longer period during the vortex interaction. The robust turbulent generation mechanism in the outer shear layer, however, mitigates the changes in vortex behaviour. The momentum deficit and the enhancement of turbulence due to the surface roughness play a key role during this process.  相似文献   

4.
5.
《Current Applied Physics》2001,1(4-5):393-405
This paper is a numerical study of the effect of flow field and heat transfer created by interactions between a pair of vortices generated by a vortex generator in a rectangular channel flow. In order to analyze the vortices produced by the vortex generator, the pseudo-compressibility method is introduced into the Navier–Strokes (NS) equation of a three-dimensional unsteady, incompressible viscous flow. A two-layer kε turbulence model is used on the flat plate three-dimensional turbulence boundary to predict the turbulence characteristics of the vortices. The computational results accurately predict the vortex characteristics, which are related to Reynolds stress, turbulent kinetic energy, and flow field. Also, in the prediction of thermal boundary layers, skin friction characteristics, and heat transfers, the present results are reasonably close to the experimental results obtained by other researchers.  相似文献   

6.
The dynamics of passive Lagrangian tracers in three-dimensional quasigeostrophic turbulence is studied numerically and compared with the behavior of two-dimensional barotropic turbulence. Despite the different Eulerian properties of the two flows, the Lagrangian dynamics of passively advected tracers in three-dimensional quasigeostrophic turbulence is very similar to that of barotropic turbulence. In both systems, coherent vortices play a major role in determining the mixing and dispersion properties. This work indicates that recent results on particle dynamics in barotropic, two-dimensional turbulence carry over to more realistic baroclinic flows, such as those encountered in the large-scale dynamics of the atmosphere and ocean.  相似文献   

7.
Periodic arrays of large scale coherent vortices and their stability have been investigated, within the framework of /spl eta//sub i/ turbulence, using two-dimensional fluid simulation in slab geometry. These vortices, in combination with viscosity damping of small scales, contribute to the formation of a steady state in a system with linearly unstable modes. The steady state comprises of a few vortex convective turn over times and seems to be fairly robust. It has been recognized that a vortex chain, consisting of positive and negative vorticities, continues to move stably in the poloidal direction (along periodic direction). On the other hand, an initial isolated monopole vortex is unstable and leads to a long-lived stable dipolar structure after a few vortex turnover periods. A variety of simple collisional interaction processes among these coherent vortices have also been explored numerically.  相似文献   

8.
Using the extended Huygens-Fresnel principle and the quadratic approximation of the phase structure function, and taking the Gaussian Schell-model (GSM) vortex beam as a typical example of partially coherent vortex beams, the explicit expressions for the cross-spectral density function and average intensity of GSM vortex beams with topological charge m=+1 propagating through slant atmospheric turbulence are derived, and used to study the propagation properties of GSM vortex beams in atmospheric turbulence along a slant path and evolution behavior of coherence vortices. It is shown that the spreading of GSM vortex beams along a horizontal path is larger than that along a slant path in the long atmospheric propagation. The propagation through horizontal atmospheric turbulence can be treated as a special case of the altitude-independent structure constant. The position of coherence vortices in slant atmospheric turbulence does not coincide with that in horizontal atmospheric turbulence, and the dependence of position of coherence vortices on the zenith angle, wavelength and reference point is illustrated by numerical examples. A comparison with the previous work is also made.  相似文献   

9.
To connect vortices in physical space and scales in wavenumber space, spectral definitions for vortex size and momentum are introduced within the framework of a probabilistic method. At a late stage of 2D decaying turbulence, a simple solution is given for the vortex position and momentum probabilities. From the solution, an energy spectrum E(k) for self-similar vortices is constructed, which is in agreement with that observed in numerical simulations. (c) 1995 American Institute of Physics.  相似文献   

10.
Burgers vortices are explicit stationary solutions of the Navier-Stokes equations which are often used to describe the vortex tubes observed in numerical simulations of three-dimensional turbulence. In this model, the velocity field is a two-dimensional perturbation of a linear straining flow with axial symmetry. The only free parameter is the Reynolds number Re = Γ/ν, where Γ is the total circulation of the vortex and ν is the kinematic viscosity. The purpose of this paper is to show that Burgers vortices are asymptotically stable with respect to small three-dimensional perturbations, for all values of the Reynolds number. This general result subsumes earlier studies by various authors, which were either restricted to small Reynolds numbers or to two-dimensional perturbations. Our proof relies on the fact that the linearized operator at Burgers vortex has a simple and very specific dependence upon the axial variable. This allows to reduce the full linearized equations to a vectorial two-dimensional problem, which can be treated using an extension of the techniques developed in earlier works. Although Burgers vortices are found to be stable for all Reynolds numbers, the proof indicates that perturbations may undergo an important transient amplification if Re is large, a phenomenon that was indeed observed in numerical simulations.  相似文献   

11.
The concept of a minimal flow unit (MFU) for the study of the basic physics of turbulent flows is introduced. The MFU is an initial vorticity configuration that consists of a few simple well-defined large-scale vortex structures. The form and position of these structures are chosen so that their interaction produces turbulence capturing many of the essential characteristics of isotropic homogeneous turbulence produced from random-phase initial conditions or that produced by continual random-phase forcing. The advantage of using the MFU is that the evolution of the vortex structures can be followed more clearly and the relationship between the evolving vortex structures and the various ranges in the energy spectrum can be more clearly defined. The addition of passive scalar fields to the MFU permits an investigation of passive scalar mixing that is relevant to the study of combustion. With a particular choice of the MFU, one that produces a trend to a finite-time singularity in the vorticity field, it is demonstrated that passive scalar distributed in the original large-scale vortices will develop intense gradients in the region where the vorticity is tending toward a singularity. In viscous flow, the evolution of the MFU clearly shows how the volume of the regions where originally well-separated passive scalars come into contact increases with increasing Reynolds number.  相似文献   

12.
管新蕾  王维  姜楠 《物理学报》2015,64(9):94703-094703
基于相同雷诺数下清水和高分子聚合物溶液壁湍流的高时间分辨率粒子图像测速技术(time-resolved particle image velocimetry, TRPIV)的对比实验, 从高聚物溶液对湍流边界层动量能量输运影响的角度分析其减阻的机理. 对比两者的雷诺应力发现高聚物的存在抑制了湍流输运过程. 这一影响与高聚物对壁湍流中占主导地位的涡旋运动和低速条带等相干结构的作用密切相关. 运用条件相位平均、相关函数和线性随机估计(linear stochastic estimation, LSE)等方法, 分析提取了高聚物溶液流场中的发卡涡和发卡涡包等典型相干结构的空间拓扑形态. 相比于清水, 高聚物溶液中相干结构的流向尺度增大, 涡旋运动的发展及低速流体喷射的强度受到削弱, 表明了添加的高聚物阻碍了湍流原有的能量传递和自维持的机理. 正是通过影响相干结构, 高聚物抑制了湍流边界层中近壁区与外区之间的动量和能量输运, 使得湍流的无序性降低, 从而减小了湍流流动的阻力.  相似文献   

13.
The generation of a vortex flow by waves on a water surface, which simulate an energy cascade in a system of gravity waves at frequencies of 3, 4, 5, and 6 Hz, has been studied experimentally. It has been found that pumping is accompanied by the propagation of waves on the surface at different angles to the fundamental mode and by a nonlinear interaction between waves resulting in the generation of new harmonics. It has been shown that large-scale flows are formed by modes of the lowest frequency of 3 Hz intersecting at acute angles. The energy distribution of the vortex motion can be described by a power-law function of the wavenumber and is independent of the energy distribution in a system of surface waves. The energy coming to large-scale vortex flows directly from the wave system is transferred to small scales. A direct rather than inverse energy flux is established in the system of vortices.  相似文献   

14.
We observe the proliferation of vortices in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional array of Josephson-coupled Bose-Einstein condensates. As long as the Josephson (tunneling) energy J exceeds the thermal energy T, the array is vortex free. With decreasing J/T, vortices appear in the system in ever greater numbers. We confirm thermal activation as the vortex-formation mechanism and obtain information on the size of bound vortex pairs as J/T is varied.  相似文献   

15.
A number of experimental studies have inferred the existence of packets of inclined, hairpinlike vortices in wall turbulence on the basis of observations made in two-dimensional x−y planes using visualization and particle image velocimetry (PIV). However, there are very few observations of hairpins in existing three-dimensional studies made using direct numerical simulation (DNS), and no such study claims to have revealed packets. We demonstrate, for the first time, the existence of hairpin vortex packets in DNS of turbulent flow. The vortex packet structure found in the present study at low Reynolds number,Re t=300, is consistent with and substantiates the observations and the results from twodimensional PIV measurements at higher Reynolds numbers in channel, pipe and boundary layer flows. Thus, the evidence supports the view that vortex packets are a universal feature of wall turbulence, independent of effects due to boundary layer trips or critical conditions in the aforementioned numerical studies. Visualization of the DNS velocity field and vortices also shows the close association of hairpin packets with long low-momentum streaks and the regions of high Reynolds shear stress.  相似文献   

16.
17.
We present a theory for the localization of three-dimensional vortex lines or two-dimensional bosons with a short-ranged repulsive interaction which are competing for a single columnar defect or potential well. For two vortices we use a necklace model approach to find a new kind of delocalization transition between two different states with a single bound particle. This exchange-delocalization transition is characterized by the onset of vortex exchange on the defect for sufficiently weak vortex-vortex repulsion or sufficiently weak binding energy corresponding to high temperature. We calculate the transition point and order of the exchange-delocalization transition. A generalization of this transition to an arbitrary vortex number is proposed.  相似文献   

18.
Dynamics of two-sign point vortices in two-dimensional circular boundary is examined by numerical simulations with MDGRAPE-2. The vortex system is characterized by the inverse temperature beta as determined from the density of states of the microcanonical ensemble of numerically generated 10(7) states. The massive simulation shows that different configurations appear in the time-asymptotic state depending on the sign of beta. Condensation of the same-sign vortices is observed when beta<0, while the both-sign vortices tend to be uniformly neutralized when beta>0. During the condensation, a part of the vortices gains energy to form clumps (patches), and the other part of the vortices loses energy to keep the total energy constant and mixes with vortices of the other sign. This observation demonstrates a characteristic feature of negative beta states that the system energy concentrates into the clumps of the same-sign vortices.  相似文献   

19.
Vortex-type singular solutions with a topological charge of the elliptic sine-Gordon equation have been studied. One- and two-dimensional vortex lattices on a homogeneous and periodic background are constructed in the explicit form using the Bäcklund transformation. The interaction of vortices is investigated and finite energy configurations are found. On the basis of the obtained results new topological defects in incommensurate magnetic and crystal structures are predicted and described. The interaction of vortex magnetic structures with nonlinear spin waves is considered.  相似文献   

20.
何雪梅  吕百达 《物理学报》2012,61(5):54201-054201
一些实验表明, 实际大气会偏离理想Kolmogorov模型. 本文基于广义Huygens-Fresnel原理和Toselli等提出的非Kolmogorov湍流模型, 推导出部分相干双曲正弦-Gauss (HSG)涡旋光束通过非Kolmogorov大气湍流的解析传输公式, 并用以对两束部分相干HSG涡旋光束相干叠加和非相干叠加形成的合成相干涡旋在非Kolmogorov大气湍流中的动态演化进行了研究. 结果表明, 合成光束平均光强的演化过程与非Kolmogorov湍流的广义指数α, 源平面上叠加涡旋光束拓扑电荷的符号, 以及叠加方式有关. 合成相干涡旋在非Kolmogorov大气湍流中传输时会出现移动、产生和湮灭. 广义指数α, 拓扑电荷符号, 以及叠加方式都会影响其演化行为. 最后, 将本文所得结果与相关文献做了比较.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号