首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform electromagnetically induced transparency (EIT) experiments in cesium vapor with pulses on the single-photon level for the first time. This was made possible by an extremely large total suppression of the EIT coupling beam by 118 dB mainly due to a newly developed triple-pass planar Fabry-Pérot etalon filter. Slowing and shaping of single-photon light pulses as well as the generation of pulses suitable for quantum key distribution applications and testing of approaches for single photon storage is demonstrated. Our results extend single-photon EIT to the particularly interesting wavelength of the Cs D1 line.  相似文献   

2.
基于单光子脉冲时间随机性的光量子随机源   总被引:1,自引:0,他引:1  
鄢秋荣  赵宝升  刘永安  盛立志 《光学学报》2012,32(3):327001-302
提出了一种基于单光子脉冲时间随机性的光量子随机源。利用衰减成单光子态的光强恒定光源和一个单光子探测器产生单光子随机脉冲,通过连续比较单光子随机脉冲序列中相邻两个脉冲的时间间隔来提取随机位。通过设计高速响应的微通道板单光子探测器和基于现场可编程门阵列(FPGA)的随机位提取电路,获得了超过10Mbit/s的随机位产生速率。通过采用恒比定时和对计数时钟倍频的方法提高时间间隔的测量精度,从而减小随机位序列的相关系数。当光量子随机源的随机位产生速率在10kbit/s以下时,所获得的二进制随机位序列的相关系数小于0.001。运用随机性测试程序ENT和DIEHARD对所获的随机位序列进行测试,测试结果表明序列的随机性非常好且不需要后续处理,完全满足真随机数的标准。  相似文献   

3.
基于泊松分布单光子源的量子误码率的分析   总被引:1,自引:0,他引:1  
马晶  张光宇  谭立英 《光学技术》2006,32(1):101-104
在自由空间量子密钥分配中,单光子源采用具有泊松分布的高度衰减激光脉冲,量子密码术协议采用BB84和B92协议。通过引入量子信道传输率、单光子捕获概率、测量因子和数据筛选因子,建立了量子误码率理论模型,给出了量子误码率的表达式。对于自由空间量子信道,引起量子误码率的主要因素是光学元件、探测器暗噪声和空间光学环境,并对这些因素进行了分析。针对低轨卫星_地面站间链路,进行了量子误码率的数值仿真研究。结果表明,在低轨卫星_地面站间进行量子密钥分配是可行的,限制自由空间量子密钥分配链路距离的主要因素是探测器暗噪声和空间光学环境。  相似文献   

4.
基于TEM10模拉盖尔-高斯光束,推导自由空间量子密钥分配中单光子捕获概率表达式。针对低轨卫星-地面站间激光链路进行单光子捕获分析。结果表明:采用可高度衰减激光脉冲的TEM10模拉盖尔-高斯光束作为单光子源,单光子捕获采用前驱波参考脉冲设置时间窗口的方法,可使卫星上接收机以最大概率捕获光子。与基模高斯光束相比,采用TEM10模拉盖尔-高斯光束的优点是,不会由于卫星运动而增加单光子捕获概率的损耗。  相似文献   

5.
We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all-optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two weak pulsed beams (40 ps pulses). Our results show that the quantum dot-nanocavity system enables fast, controllable optical switching at the single-photon level.  相似文献   

6.
Current quantum cryptography systems are limited by the attenuated coherent pulses they use as light sources: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a tenfold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarization-entangled photon pairs. The utility of these light sources is currently limited by the low efficiency with which photons are collected. However, by fabricating an optical microcavity containing a single quantum dot, the spontaneous emission rate into a single mode can be enhanced. Using this method, we have seen 78% coupling of single-dot radiation into a single cavity resonance. The enhanced spontaneous decay should also allow for higher photon pulse rates, up to about 3 GHz. Received 8 July 2001 and Received in final form 25 August 2001  相似文献   

7.
We give a brief review on the quantum information processing in decoherence-free subspace (DFS). We show how to realize the initialization of the entangled quantum states, information transfer and teleportation of quantum states, two-qubit Grover search and how to construct the quantum network in DFS, within the cavity QED regime based on a cavity-assisted interaction by single-photon pulses.   相似文献   

8.
单光子源通常采用基于高斯光束的高度衰减激光脉冲,假设激光束具有初始高斯时域脉冲波形和TEM01模拉盖尔-高斯空域分布.基于折射率起伏的Rytov近似和修正von Karman谱模型,研究了大气湍流对星地量子通信单光子捕获概率的影响;建立了上行信道和下行信道的单光子捕获概率理论模型;针对低轨卫星-地面站间激光链路,对单光子捕获概率进行了分析.结果表明:上行信道的单光子捕获概率强烈依赖于地面折射率结构常数C2n(0),且随着C2n(0)的增加而减小;然而,下行信道的单光子捕获概率并不依赖于C2n(0),即大气湍流对其没有影响.  相似文献   

9.
张光宇  马晶  谭立英 《光子学报》2005,34(8):1201-1204
从光波电磁场方程的TEM10和TEM01模厄米-高斯光束出发,推导了自由空间量子密钥分配的单光子捕获概率表达式.针对低轨卫星-地面站间激光链路,进行了单光子捕获分析.理论研究表明,对于低轨卫星-地面站间量子密钥分配,采用TEM10和TEM01模厄米-高斯型高度衰减激光脉冲作为单光子源是可行的.  相似文献   

10.
Two light pulses propagating with slow group velocities in a coherently prepared atomic gas exhibit dissipation-free nonlinear coupling of an unprecedented strength. This enables a single-photon pulse to coherently control or manipulate the quantum state of the other. Processes of this kind result in generation of entangled states of radiation field and open up new prospectives for quantum information processing.  相似文献   

11.
Due to the limit of response speed of the present single-photon detector, the code rate is still too low to come into practical use for the present quantum key distribution (QKD) system.A new idea is put up to design a quick single-photon detector.This quick single-photon detector is composed of a multi-port optic-fiber splitter and many avalanche photo diodes (APDs).Au of the ports with APDs work on the time division and cooperate with a logic discriminating and deciding unit driven by the clock signal.The operation frequency lies on the number N of ports, and can reach N times of the conventional single-photon detector.The single-photon prompt detection can come true for high repetition-rate pulses.The applying of this detector will largely raise the code rate of the QKD, and boost the commercial use.  相似文献   

12.
Room-temperature, easy-to-operate quantum memories are essential building blocks for future long distance quantum information networks operating on an intercontinental scale, because devices like quantum repeaters, based on quantum memories, will have to be deployed in potentially remote, inaccessible locations. Here we demonstrate controllable, broadband and efficient storage and retrieval of weak coherent light pulses at the single-photon level in warm atomic cesium vapor using the robust far off-resonant Raman memory scheme. We show that the unconditional noise floor of this technically simple quantum memory is low enough to operate in the quantum regime, even in a room-temperature environment.  相似文献   

13.
Round-robin differential phase shift(RRDPS) is a novel quantum key distribution protocol which can bound information leakage without monitoring signal disturbance. In this work, to decrease the effect of the vacuum component in a weak coherent pulses source, we employ a practical decoy-state scheme with heralded singlephoton source for the RRDPS protocol and analyze the performance of this method. In this scheme, only two decoy states are needed and the yields of single-photon state and multi-photon states, as well as the bit error rates of each photon states, can be estimated. The final key rate of this scheme is bounded and simulated over transmission distance. The results show that the two-decoy-state method with heralded single-photon source performs better than the two-decoy-state method with weak coherent pulses.  相似文献   

14.
李源  鲍皖苏  李宏伟  周淳  汪洋 《中国物理 B》2016,25(1):10305-010305
Passive decoy-state quantum key distribution systems, proven to be more desirable than active ones in some scenarios,also have the problem of device imperfections like finite-length keys. In this paper, based on the WCP source which can be used for the passive decoy-state method, we obtain the expressions of single-photon error rates, single-photon counts, and phase error rates. According to the information of smooth min-entropy, we calculate the key generation rate under the condition of finite-length key. Key generation rates with different numbers of pulses are compared by numerical simulations. From the results, it can be seen that the passive decoy-state method can have good results if the total number of pulses reaches 1010. We also simulate the passive decoy-state method with different probabilities of choosing a pulse for parameter estimation when the number of pulses is fixed.  相似文献   

15.
We report an intrinsically stable quantum key distribution scheme based on genuine frequency-coded quantum states. The qubits are efficiently processed without fiber interferometers by fully exploiting the nonlinear interaction occurring in electro-optic phase modulators. The system requires only integrated off-the-shelf devices and could be used with a true single-photon source. Preliminary experiments have been performed with weak laser pulses and have demonstrated the feasibility of this new setup.  相似文献   

16.
17.
We develop adiabatic perturbation theory for quantum systems responding to short laser pulses, with or without a frequency chirp. Our approach rests on lifting the time-dependent Schr?dinger equation to an extended Hilbert space, then applying standard perturbational techniques to Floquet states in this extended space, and finally projecting back to the physical Hilbert space. The same strategy also allows us to construct superadiabatic bases for monitoring the quantum evolution in the course of a pulse. These bases provide a diagnostic tool for improving the efficiency of pulse-induced population transfer. The formalism is applied to the selective excitation of molecular vibrational states by chirped laser pulses, which exploit either successive single-photon resonances or a multiphoton resonance, and by a STIRAP-like process. Received: 23 June 1998 / Revised: 18 August 1998 / Accepted: 25 August 1998  相似文献   

18.
We suggest a protocol for quantum key distribution—a technology allowing two distant parties to create an unconditionally secure cryptographic key. For the creation of the key we suggest to use laser pulses weakened to the single-photon level of duration T, the pulse carrying the value “1” being shifted in time by T/2 compared to the pulse carrying the value “0”. The overlap of the pulses provides their non-orthogonality and, therefore, impossibility to discriminate between them with certainty. Besides the signal pulses the protocol uses coherent decoy pulses, having longer duration than the signal ones and providing a more effective protection from a wide class of attacks. Security of the protocol is based on interferometric control of the pulse coherence at the receiving station. We analyze the security of the protocol against a number of intercept-resend attacks and on the basis of this analysis substantiate the necessity of decoy state implementation.  相似文献   

19.
Debabrata Goswami 《Pramana》2002,59(2):235-242
We show how the use of optimally shaped pulses to guide the time evolution of a system (‘coherent control’) can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton density-matrix approach to explore the effects of ultrafast shaped pulses for two-level systems that do not have a single photon resonance, and show that many multiphoton results are surprisingly similar to the single-photon results. Finally, we choose two specific chirped pulses: one that always generates inversion and the other that always generates self-induced transparency to demonstrate an ensemble CNOT gate.  相似文献   

20.
A tripartite single-photon state shared through noisy quantum channels is considered for three different system configurations. The quantum teleportation of a single-photon state between two parties is investigated in cases with and without the assistance of a third party. The condition that the quantum teleportation is superior to the classical one is provided in terms of the damping rate and detector efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号