首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer’s disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 μM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.  相似文献   

2.
A quinoxaline scaffold exhibits various bioactivities in pharmacotherapeutic interests. In this research, twelve quinoxaline derivatives were synthesized and evaluated as new acetylcholinesterase inhibitors. We found all compounds showed potent inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 0.077 to 50.080 µM, along with promising predicted drug-likeness and blood–brain barrier (BBB) permeation. In addition, potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 14.91 to 60.95 µM was observed in some compounds. Enzyme kinetic study revealed the most potent compound (6c) as a mixed-type AChE inhibitor. No cytotoxicity from the quinoxaline derivatives was noticed in the human neuroblastoma cell line (SHSY5Y). In silico study suggested the compounds preferred the peripheral anionic site (PAS) to the catalytic anionic site (CAS), which was different from AChE inhibitors (tacrine and galanthamine). We had proposed the molecular design guided for quinoxaline derivatives targeting the PAS site. Therefore, the quinoxaline derivatives could offer the lead for the newly developed candidate as potential acetylcholinesterase inhibitors.  相似文献   

3.
A series of new analogs of nitrogen mustards (4a–4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and β-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman’s colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.  相似文献   

4.
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease towards which pleiotropic approach using Multi-Target Directed Ligands is nowadays recognized as probably convenient. Among the numerous targets which are today validated against AD, acetylcholinesterase (ACh) and Monoamine Oxidase-B (MAO-B) appear as particularly convincing, especially if displayed by a sole agent such as ladostigil, currently in clinical trial in AD. Considering these results, we wanted to take benefit of the structural analogy lying in donepezil (DPZ) and rasagiline, two indane derivatives marketed as AChE and MAO-B inhibitors, respectively, and to propose the synthesis and the preliminary in vitro biological characterization of a structural compromise between these two compounds, we called propargylaminodonepezil (PADPZ). The synthesis of racemic trans PADPZ was achieved and its biological evaluation established its inhibitory activities towards both (h)AChE (IC50 = 0.4 µM) and (h)MAO-B (IC50 = 6.4 µM).  相似文献   

5.
Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO’s effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.  相似文献   

6.
In this study six unsymmetrical thiourea derivatives, 1-isobutyl-3-cyclohexylthiourea (1), 1-tert-butyl-3-cyclohexylthiourea (2), 1-(3-chlorophenyl)-3-cyclohexylthiourea (3), 1-(1,1-dibutyl)-3-phenylthiourea (4), 1-(2-chlorophenyl)-3-phenylthiourea (5) and 1-(4-chlorophenyl)-3-phenylthiourea (6) were obtained in the laboratory under aerobic conditions. Compounds 3 and 4 are crystalline and their structure was determined for their single crystal. Compounds 3 is monoclinic system with space group P21/n while compound 4 is trigonal, space group R3:H. Compounds (1–6) were tested for their anti-cholinesterase activity against acetylcholinesterase and butyrylcholinesterase (hereafter abbreviated as, AChE and BChE, respectively). Potentials (all compounds) as sensing probes for determination of deadly toxic metal (mercury) using spectrofluorimetric technique were also investigated. Compound 3 exhibited better enzyme inhibition IC50 values of 50, and 60 µg/mL against AChE and BChE with docking score of −10.01, and −8.04 kJ/mol, respectively. The compound also showed moderate sensitivity during fluorescence studies.  相似文献   

7.
In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2’-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 μg/mL (against AChE) and 60 μg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 μg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 μg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer’s disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.  相似文献   

8.
In our previous work, the partitions (1 mg/mL) of Ageratum conyzoides (AC) aerial parts and Ixora coccinea (IC) leaves showed inhibitions of 94% and 96%, respectively, whereas their fractions showed IC50 43 and 116 µg/mL, respectively, toward Matrix Metalloproteinase9 (MMP9), an enzyme that catalyzes a proteolysis of extracellular matrix. In this present study, we performed IC50 determinations for AC n-hexane, IC n-hexane, and IC ethylacetate partitions, followed by the cytotoxicity study of individual partitions against MDA-MB-231, 4T1, T47D, MCF7, and Vero cell lines. Successive fractionations from AC n-hexane and IC ethylacetate partitions led to the isolation of two compounds, oxytetracycline (OTC) and dioctyl phthalate (DOP). The result showed that AC n-hexane, IC n-hexane, and IC ethylacetate partitions inhibit MMP9 with their respective IC50 as follows: 246.1 µg/mL, 5.66 µg/mL, and 2.75 × 10−2 µg/mL. Toward MDA-MB-231, 4T1, T47D, and MCF7, AC n-hexane demonstrated IC50 2.05, 265, 109.70, and 2.11 µg/mL, respectively, whereas IC ethylacetate showed IC50 1.92, 57.5, 371.5, and 2.01 µg/mL, respectively. The inhibitions toward MMP9 by OTC were indicated by its IC50 18.69 µM, whereas DOP was inactive. A molecular docking study suggested that OTC prefers to bind to PEX9 rather than its catalytic domain. Against 4T1, OTC showed inhibition with IC50 414.20 µM. In conclusion, this study furtherly supports the previous finding that AC and IC are two herbals with potential to be developed as triple-negative anti-breast cancer agents.  相似文献   

9.
This work aimed to evaluate the phenolic content and in vitro antioxidant, antimicrobial and enzyme inhibitory activities of the methanol extracts and their fractions of two edible halophytic Limonium species, L. effusum (LE) and L. sinuatum (LS). The total phenolic content resulted about two-fold higher in the ethyl acetate fraction of LE (522.82 ± 5.67 mg GAE/g extract) than in that of LS (274.87 ± 1.87 mg GAE/g extract). LC-MS/MS analysis indicated that tannic acid was the most abundant phenolic acid in both species (71,439.56 ± 3643.3 µg/g extract in LE and 105,453.5 ± 5328.1 µg/g extract in LS), whereas hyperoside was the most abundant flavonoid (14,006.90 ± 686.1 µg/g extract in LE and 1708.51 ± 83.6 µg/g extract in LS). The antioxidant capacity was evaluated by DPPH and TAC assays, and the stronger antioxidant activity in ethyl acetate fractions was highlighted. Both species were more active against Gram-positive bacteria than Gram negatives and showed considerable growth inhibitions against tested fungi. Interestingly, selective acetylcholinesterase (AChE) activity was observed with LE and LS. Particularly, the water fraction of LS strongly inhibited AChE (IC50 = 0.199 ± 0.009 µg/mL). The ethyl acetate fractions of LE and LS, as well as the n-hexane fraction of LE, exhibited significant antityrosinase activity (IC50 = 245.56 ± 3.6, 295.18 ± 10.57 and 148.27 ± 3.33 µg/mL, respectively). The ethyl acetate fraction and methanol extract of LS also significantly inhibited pancreatic lipase (IC50 = 83.76 ± 4.19 and 162.2 ± 7.29 µg/mL, respectively). Taken together, these findings warrant further investigations to assess the potential of LE and LS as a bioactive source that can be exploited in pharmaceutical, cosmetics and food industries.  相似文献   

10.
Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. However, the content of these constituents varied depending on environmental factors and pedoclimatic conditions. Principal component analysis (PCA) was performed. Based on Relative Antioxidant Capacity Index (RACI), S2 essential oil exhibited the highest radical potential with an IC50 value of 20.64 μg/mL in ABTS test and presented the highest protection of lipid peroxidation with IC50 values of 38.06 and 46.32 μg/mL after 30 and 60 min of incubation, respectively. The most promising inhibitory activity against BChE was found for S3 sample (IC50 of 33.13 μg/mL).  相似文献   

11.
The multi-target-directed ligands (MTDLs) strategy is encouraged for the development of novel modulators targeting multiple pathways in the neurodegenerative cascade typical for Alzheimer’s disease (AD). Based on the structure of an in-house irreversible monoamine oxidase B (MAO-B) inhibitor, we aimed to introduce a carbamate moiety on the aromatic ring to impart cholinesterase (ChE) inhibition, and to furnish multifunctional ligands targeting two enzymes that are intricately involved in AD pathobiology. In this study, we synthesized three dual hMAO-B/hBChE inhibitors 13–15, with compound 15 exhibiting balanced, low micromolar inhibition of hMAO-B (IC50 of 4.3 µM) and hBChE (IC50 of 8.5 µM). The docking studies and time-dependent inhibition of hBChE confirmed the initial expectation that the introduced carbamate moiety is responsible for covalent inhibition. Therefore, dual-acting compound 15 represents an excellent starting point for further optimization of balanced MTDLs  相似文献   

12.
Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and β-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and β-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and β-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and β-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and β-amyrin. Furthermore, this was the first study indicating that α-amyrin and β-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.  相似文献   

13.
Five glutinous purple rice cultivars and non-glutinous purple rice cultivated in different altitudes in the north of Thailand were collected. The samples were extracted using ethanol and determined for anthocyanins using HPLC. The total phenolic content (TPC), total flavonoid content (TFC), and the antioxidant, anti-inflammatory, and antimicrobial activities against foodborne pathogens were investigated. The highland glutinous cultivar named Khao’ Gam Luem-Phua (KGLP) extract had significantly high levels of cyanidin 3-O-glucoside, peonidin 3-O-glucoside, delphinidin 3-O-glucoside, TPC, and TFC, as well as exerting a potent antioxidant activity through ABTS assay (524.26 ± 4.63 VCEAC, mg l-ascorbic-ascorbic/g extract), lipid peroxidation (IC50 = 19.70 ± 0.31 µg/mL), superoxide anions (IC50 = 11.20 ± 0.25 µg/mL), nitric oxide (IC50 = 17.12 ± 0.56 µg/mL), a suppression effect on nitric oxide (IC50 = 18.32 ± 0.82 µg/mL), and an inducible nitric oxide synthase production (IC50 = 23.43 ± 1.21 µg/mL) in combined lipopolysaccharide-interferon-γ-activated RAW 264.7 murine macrophage cells. Additionally, KGLP also exhibited antimicrobial activity against foodborne pathogens, Staphylococcus aureus, Escherichia coli, Salmonella Enteritidis, and Vibrio parahaemolyticus. These results indicate that Thai glutinous purple rice cultivated on the highland could be a potent natural source of antioxidants, anti-inflammatories, and antimicrobial agents for use as a natural active pharmaceutical ingredient in functional food and nutraceutical products.  相似文献   

14.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

15.
This work aimed to study the chemical composition, cholinesterase inhibitory activity, and enantiomeric analysis of the essential oil from the aerial parts (leaves and flowers) of the plant Lepechinia paniculata (Kunth) Epling from Ecuador. The essential oil (EO) was obtained through steam distillation. The chemical composition of the oil was evaluated by gas chromatography, coupled to mass spectrometry (GC–MS) and a flame ionization detector (GC-FID). The analyses led to the identification of 69 compounds in total, of which 40 were found in the leaves and 29 were found in the flowers of the plant. The major components found in the oil were 1,8-Cineole, β-Pinene, δ-3-Carene, α-Pinene, (E)-Caryophyllene, Guaiol, and β-Phellandrene. Flower essential oil showed interesting selective inhibitory activity against both enzymes AChE (28.2 ± 1.8 2 µg/mL) and BuChE (28.8 ± 1.5 µg/mL). By contrast, the EO of the leaves showed moderate mean inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), with IC50 values of 38.2 ± 2.9 µg/mL and 47.4 ± 2.3 µg/mL, respectively.  相似文献   

16.
Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman’s assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer’s disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.  相似文献   

17.
The present study investigated the antidiabetic properties of the extracts and fractions from leaves and stem bark of M. glabra based on dipeptidyl peptidase-4 (DPP-4) and α-Amylase inhibitory activity assays. The chloroform extract of the leaves was found to be most active towards inhibition of DPP-4 and α-Amylase with IC50 of 169.40 μg/mL and 303.64 μg/mL, respectively. Bioassay-guided fractionation of the leaves’ chloroform extract revealed fraction 4 (CF4) as the most active fraction (DPP-4 IC50: 128.35 μg/mL; α-Amylase IC50: 170.19 μg/mL). LC-MS/MS investigation of CF4 led to the identification of trans-decursidinol (1), swermirin (2), methyl 3,4,5-trimethoxycinnamate (3), renifolin (4), 4′,5,6,7-tetramethoxy-flavone (5), isorhamnetin (6), quercetagetin-3,4′-dimethyl ether (7), 5,3′,4′-trihydroxy-6,7-dimethoxy-flavone (8), and 2-methoxy-5-acetoxy-fruranogermacr-1(10)-en-6-one (9) as the major components. The computational study suggested that (8) and (7) were the most potent DPP-4 and α-Amylase inhibitors based on their lower binding affinities and extensive interactions with critical amino acid residues of the respective enzymes. The binding affinity of (8) with DPP-4 (−8.1 kcal/mol) was comparable to that of sitagliptin (−8.6 kcal/mol) while the binding affinity of (7) with α-Amylase (−8.6 kcal/mol) was better than acarbose (−6.9 kcal/mol). These findings highlight the phytochemical profile and potential antidiabetic compounds from M. glabra that may work as an alternative treatment for diabetes.  相似文献   

18.
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75, −5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.  相似文献   

19.
Due to sedentary lifestyle and harsh environmental conditions, gorgonian coral extracts are recognized as a rich source of novel compounds with various biological activities, of interest to the pharmaceutical and cosmetic industries. The presented study aimed to perform chemical screening of organic extracts and semi-purified fractions obtained from the common Adriatic gorgonian, sea fan, Eunicella cavolini (Koch, 1887) and explore its abilities to exert different biological effects in vitro. Qualitative chemical evaluation revealed the presence of several classes of secondary metabolites extended with mass spectrometry analysis and tentative dereplication by using Global Natural Product Social Molecular Networking online platform (GNPS). Furthermore, fractions F4 and F3 showed the highest phenolic (3.28 ± 0.04 mg GAE/g sample) and carotene (23.11 ± 2.48 mg β-CA/g sample) content, respectively. The fraction F3 inhibited 50% of DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS (2,2′-azino-bis (3-ethylbenzthiazolin-6-yl) sulfonic acid) radicals at the concentrations of 767.09 ± 11.57 and 157.16 ± 10.83 µg/mL, respectively. The highest anti-inflammatory potential was exhibited by F2 (IC50 = 198.70 ± 28.77 µg/mL) regarding the inhibition of albumin denaturation and F1 (IC50 = 254.49 ± 49.17 µg/mL) in terms of soybean lipoxygenase inhibition. In addition, the most pronounced antiproliferative effects were observed for all samples (IC50 ranging from 0.82 ± 0.14–231.18 ± 46.13 µg/mL) against several carcinoma cell lines, but also towards non-transformed human fibroblasts pointing to a generally cytotoxic effect. In addition, the antibacterial activity was tested by broth microdilution assay against three human pathogenic bacteria: Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The latter was the most affected by fractions F2 and F3. Finally, further purification, isolation and characterization of pure compounds from the most active fractions are under investigation.  相似文献   

20.
In the present study, the influence of five drying techniques on the structural and biological properties of polysaccharides from lotus leaves (LLPs) was investigated. Results revealed that the yields, contents of basic chemical components, molecular weights, and molar ratios of compositional monosaccharides of LLPs varied by different drying technologies. Low molecular weight distributions were observed in polysaccharides obtained from lotus leaves by hot air drying (LLP-H), microwave drying (LLP-M), and radio frequency drying (LLP-RF), respectively. The high contents of bound polyphenolics were measured in LLP-H and LLP-M, as well as polysaccharides obtained from lotus leaves by vacuum drying (LLP-V). Furthermore, both Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of LLPs were similar, indicating that drying technologies did not change their basic chemical structures. Besides, all LLPs exhibited obvious biological properties, including in vitro antioxidant capacities, antiglycation activities, and inhibitory effects on α-glucosidase. Indeed, LLP-H exhibited higher 2,2-azidobisphenol (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability (IC50 values, LLP-H, 0.176 ± 0.004 mg/mL; vitamin C, 0.043 ± 0.002 mg/mL) and 2,2-diphenyl-1-(2,4,6-trinitrate phenyl) hydrazine radical scavenging ability (IC50 values, LLP-H, 0.241 ± 0.007 mg/mL; butylated hydroxytoluene, 0.366 ± 0.010 mg/mL) than others, and LLP-M exerted stronger antiglycation (IC50 values, LLP-M, 1.023 ± 0.053 mg/mL; aminoguanidine, 1.744 ± 0.080 mg/mL) and inhibitory effects on α-glucosidase (IC50 values, LLP-M, 1.90 ± 0.02 μg/mL; acarbose, 724.98 ± 16.93 μg/mL) than others. These findings indicate that both hot air drying and microwave drying can be potential drying techniques for the pre-processing of lotus leaves for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号