首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amorphous form of carvedilol phosphate (CVD) was obtained as a result of grinding. The identity of the obtained amorphous form was confirmed by powder X-ray diffraction (PXRD), different scanning calorimetry (DSC), and FT-IR spectroscopy. The process was optimized in order to obtain the appropriate efficiency and time. The crystalline form of CVD was used as the reference standard. Solid dispersions of crystalline and amorphous CVD forms with hydrophilic polymers (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®) were obtained. Their solubility at pH 1.2 and 6.8 was carried out, as well as their permeation through a model system of biological membranes suitable for the gastrointestinal tract (PAMPA-GIT) was established. The influence of selected polymers on CVD properties was defined for the amorphous form regarding the crystalline form of CVD. As a result of grinding (four milling cycles lasting 15 min with 5 min breaks), amorphous CVD was obtained. Its presence was confirmed by the “halo effect” on the diffraction patterns, the disappearance of the peak at 160.5 °C in the thermograms, and the changes in position/disappearance of many characteristic bands on the FT-IR spectra. As a result of changes in the CVD structure, its lower solubility at pH 1.2 and pH 6.8 was noted. While the amorphous dispersions of CVD, especially with Pluronic® F-127, achieved better solubility than combinations of crystalline forms with excipients. Using the PAMPA-GIT model, amorphous CVD was assessed as high permeable (Papp > 1 × 10−6 cm/s), similarly with its amorphous dispersions with excipients (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®), although in their cases, the values of apparent constants permeability were decreased.  相似文献   

2.
Nucleoside and nucleotide analogues are essential antivirals in the treatment of infectious diseases such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV). To celebrate the 80th birthday of Prof. Dr. Erik De Clercq on 28 March 2021, this review provides an overview of his contributions to eight approved nucleos(t)ide drugs: (i) three adenosine nucleotide analogues, namely tenofovir disoproxil fumarate (Viread®) and tenofovir alafenamide (Vemlidy®) against HIV and HBV infections and adefovir dipivoxil (Hepsera®) against HBV infections; (ii) two thymidine nucleoside analogues, namely brivudine (Zostex®) against HSV-1 and VZV infections and stavudine (Zerit®) against HIV infections; (iii) two guanosine analogues, namely valacyclovir (Valtrex®, Zelitrex®) against HSV and VZV and rabacfosadine (Tanovea®-CA1) for the treatment of lymphoma in dogs; and (iv) one cytidine nucleotide analogue, namely cidofovir (Vistide®) for the treatment of HCMV retinitis in AIDS patients. Although adefovir dipivoxil, stavudine, and cidofovir are virtually discontinued for clinical use, tenofovir disoproxil fumarate and tenofovir alafenamide remain the most important antivirals against HIV and HBV infections worldwide. Overall, the broad-spectrum antiviral potential of nucleos(t)ide analogues supports their development to treat or prevent current and emerging infectious diseases worldwide.  相似文献   

3.
The FDA (U.S. Food and Drug Administration) has approved only a negligible number of poly(lactide-co-glycolide) (PLGA)-based microsphere formulations, indicating the difficulty in developing a PLGA microsphere. A thorough understanding of microsphere formulations is essential to meet the challenge of developing innovative or generic microspheres. In this study, the key factors, especially the key process factors of the marketed PLGA microspheres, were revealed for the first time via a reverse engineering study on Vivitrol® and verified by the development of a generic naltrexone-loaded microsphere (GNM). Qualitative and quantitative similarity with Vivitrol®, in terms of inactive ingredients, was accomplished by the determination of PLGA. Physicochemical characterization of Vivitrol® helped to identify the critical process parameters in each manufacturing step. After being prepared according to the process parameters revealed by reverse engineering, the GNM demonstrated similarity to Vivitrol® in terms of quality attributes and in vitro release (f2 = 65.3). The research on the development of bioequivalent microspheres based on the similar technology of Vivitrol® will benefit the development of other generic or innovative microspheres.  相似文献   

4.
Zinc is an effective anti-inflammatory and antioxidant trace element. The aim of this study was to analyse the protective effect of zinc and zinc–prolactin systems as additives of preservation solutions in the prevention of nephron damage caused during ischemia. The study used a model for storing isolated porcine kidneys in Biolasol®. The solution was modified with the addition of Zn at a dose of 1 µg/L and Zn: 1 µg/L with prolactin (PRL): 0.1 µg/L. After 2 h and 48 h of storage, the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, sodium, potassium, creatinine and total protein were determined. Zinc added to the Biolasol® composition at a dose of 1 µg/L showed minor effectiveness in the protection of nephrons. In turn, Zn2+ added to Biolasol + PRL (PRL: 0.1 µg/L) acted as a prolactin inhibitor. We do not recommend the addition of Zn(II) (1 µg/L) and Zn(II) (1 µg/L) + PRL (0.1 µg/L) to the Biolasol solution.  相似文献   

5.
Bopu powder® and Sangrovit® were developed from Macleaya cordata and are widely used in agriculture and animal husbandry, but their impurities have been rarely reported in the literature. Impurity analysis is of great importance to the quality and safety of veterinary drugs. In this study, high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) combined with a screening method was used to screen and characterize the impurities in Bopu powder® and Sangrovit®. A total of 58 impurities were screened from Bopu powder® and Sangrovit® using the screening strategies, of which 39 were identified by their accurate m/z value, characteristic MS/MS data, and fragmentation pathways of references. This established method was used for impurity analysis for the first time and proved to be a useful and rapid tool to screen and identify the impurities of Bopu powder® and Sangrovit®, especially for those at trace levels in a complex sample. In addition, this study marks the first comprehensive research into impurities in these two products and has great significance for the systematic detection of impurities in other plant-derived drugs.  相似文献   

6.
A new category of commercial bulk fill composite resins (CRs) enables the placement of 4-mm-thick layers as an alternative to the traditional time-consuming incremental technique. The purpose of the present study was to compare the efficiency of the polymerization, adaptation and porosity of two high-viscosity ‘sculptable’ bulk fill CRs (Filtek™ Bulk Fill (3M™ ESPE, St. Paul, MN, USA) and Tetric EvoCeram® Bulk Fill (Ivoclar Vivadent AG, Schwan, Liechtenstein)) and two low-viscosity ‘flowable’ bulk fill CRs (SureFil® SDR™ flow (Dentsply Sirona, Charlotte, NC, USA) and Tetric EvoFlow® Bulk Fill (Ivoclar Vivadent AG, Schaan, Liechtenstein)). Cylindrical samples of the bulk fill CRs (4 mm height × 10 mm diameter) were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Additionally, occlusal cavities were prepared in twelve extracted human molars and restored with the bulk fill CRs (n = 3 for each CR). The adaptation and porosity of the bulk fill CRs were evaluated by X-ray microcomputed tomography (µCT) with a 3D morphometric analysis, and the adaptation was also analyzed by scanning electron microscopy (SEM) on longitudinal vestibulo-oral sections of the restored teeth. The AFM analysis demonstrated that the surface roughness of the SureFil® SDR™ flow was higher than that of the Tetric EvoFlow® Bulk Fill and that the surface roughness of Filtek™ Bulk Fill was higher than that of Tetric EvoCeram® Bulk Fill. µCT and SEM confirmed that the flowable bulk fill CRs had excellent adaptation to the cavity walls. The 3D morphometric analysis showed the highest and lowest degrees of porosity in Filtek™ Bulk Fill and Tetric EvoFlow® Bulk Fill, respectively. In general, the flowable bulk fill CRs exhibited better adaptation, a higher efficiency of polymerization and lower porosity than the sculptable materials.  相似文献   

7.
The purpose of this study was to develop mixed polymeric micelles with high drug loading capacity to improve the oral bioavailability of icaritin with Soluplus® and Poloxamer 407 using a creative acid-base shift (ABS) method, which exhibits the advantages of exclusion of organic solvents, high drug loading and ease of scaling-up. The feasibility of the ABS method was successfully demonstrated by studies of icaritin-loaded polymeric micelles (IPMs). The prepared IPMs were characterized to have a spherical shape with a size of 72.74 ± 0.51 nm, and 13.18% drug loading content. In vitro release tests confirmed the faster release of icaritin from IPMs compared to an oil suspension. Furthermore, bioavailability of icaritin in IPMs in beagle dogs displayed a 14.9-fold increase when compared with the oil suspension. Transcellular transport studies of IPMs across Caco-2 cell monolayers confirmed that the IPMs were endocytosed in their intact forms through macropinocytosis, clathrin-, and caveolae-mediated pathways. In conclusion, the results suggested that the mixed micelles of Soluplus® and Poloxamer 407 could be a feasible drug delivery system to enhance oral bioavailability of icaritin, and the ABS method might be a promising technology for the preparation of polymeric micelles to encapsulate poorly water-soluble weakly acidic and alkaline drugs.  相似文献   

8.
The membrane is a crucial component of Zn slurry–air flow battery since it provides ionic conductivity between the electrodes while avoiding the mixing of the two compartments. Herein, six commercial membranes (Cellophane™ 350PØØ, Zirfon®, Fumatech® PBI, Celgard® 3501, 3401 and 5550) were first characterized in terms of electrolyte uptake, ion conductivity and zincate ion crossover, and tested in Zn slurry–air flow battery. The peak power density of the battery employing the membranes was found to depend on the in-situ cell resistance. Among them, the cell using Celgard® 3501 membrane, with in-situ area resistance of 2 Ω cm2 at room temperature displayed the highest peak power density (90 mW cm−2). However, due to the porous nature of most of these membranes, a significant crossover of zincate ions was observed. To address this issue, an ion-selective ionomer containing modified poly(phenylene oxide) (PPO) and N-spirocyclic quaternary ammonium monomer was coated on a Celgard® 3501 membrane and crosslinked via UV irradiation (PPO-3.45 + 3501). Moreover, commercial FAA-3 solutions (FAA, Fumatech) were coated for comparison purpose. The successful impregnation of the membrane with the anion-exchange polymers was confirmed by SEM, FTIR and Hg porosimetry. The PPO-3.45 + 3501 membrane exhibited 18 times lower zincate ions crossover compared to that of the pristine membrane (5.2 × 10−13 vs. 9.2 × 10−12 m2 s−1). With low zincate ions crossover and a peak power density of 66 mW cm−2, the prepared membrane is a suitable candidate for rechargeable Zn slurry–air flow batteries.  相似文献   

9.
Doxorubicin is a cytotoxic anthracycline derivative that has been used as a chemotherapeutic in many different forms of human cancer with some success. However, doxorubicin treatment has several side-effects, the most serious of which is cardiomyopathy, that can be fatal. Doxorubicin encapsulation in PEGylated liposomes (Doxil®) has been shown to increase tumour localisation and decrease cardiotoxicity. Conversely, the stability of such liposomes also leads to increased circulation times and accumulation in the skin, resulting in palmar planter erythrodysesthesia, while also limiting release of the drug at the tumour site. Specific targeting of such liposomes to tumour cells has been attempted using various receptor-specific peptides and antibodies. However, targeting a single epitope limits the likely number of tumour targets and increases the risk of tumour resistance through mutation. In this report, Doxil® was coupled to peptide sequence p700 derived from tissue inhibitor of metalloproteinase 3. This Doxil® -P700 complex results in an approximately 100-fold increase in drug uptake, relative to Doxil® alone, by both mouse and human breast cancer cells and immortalised vascular cells resulting in an increase in cytotoxicity. Using p700 to target liposomes in this way may enable specific delivery of doxorubicin or other drugs to a broad range of cancers.  相似文献   

10.
The impact of key classes of compounds found in wine on protein removal by the ion-exchange resin, Macro-Prep® High S, was examined by adsorption isotherm experiments. A model wine system, which contained a prototypical protein Bovine Serum Albumin (BSA), was used. We systematically changed concentrations of individual chemical components to generate and compare adsorption isotherm plots and to quantify adsorption affinity or capacity parameters of Macro-Prep® High S ion-exchange resin. The pH (hydronium ion concentration), ethanol concentration, and prototypical phenolics and polysaccharide compounds are known to impact interactions with proteins and thus could alter the adsorption affinity and capacity of Macro-Prep® High S ion-exchange resin. At low equilibrium protein concentrations (< ~0.3 (g BSA)/L) and at high equilibrium protein concentrations in model wines at various pH, the adsorption behavior followed the Langmuir isotherm, most likely due to the resin acting as a monolayer adsorbent. The resulting range of BSA capacity was between 0.15–0.18 (g BSA)/(g Macro-Prep® High S resin). With the addition of ethanol, catechin, caffeic acid, and polysaccharides, the protein adsorption behavior was observed to differ at higher equilibrium protein concentrations (> ~0.3 (g BSA)/L), likely as a result of Macro-Prep® acting as an unrestricted multilayer adsorbent at these conditions. These data can be used to inform the design and scale-up of ion-exchange columns for removing proteins from wines.  相似文献   

11.
The solubility and dissolution thermodynamics of new c-Met inhibitor, ABN401, were determined in eleven solvents and Transcutol® HP–water mixture (TWM) from 298.15 to 318.15 K. The experimental solubilities were validated using five mathematical models, namely modified Apelblat, van’t Hoff, Buchowski–Ksiazaczak λh, Yalkowsky, and Jouyban–Acree van’t Hoff models. The experimental results were correlated and utilized further to investigate the feasibility of nanosuspension formation using liquid anti-solvent precipitation. Thermodynamic solubility of ABN401 increased significantly with the increase in temperature and maximum solubility was obtained with Transcutol® HP while low solubility in was obtained water. An activity coefficient study indicated that high molecular interaction was observed in ABN401–Transcutol® HP (THP). The solubility increased proportionately as the mole fraction of Transcutol® HP increased in TWM, which was also supported by a solvent effect study. The result suggested endothermic and entropy-driven dissolution. Based on the solubility, nanosuspension was designed with Transcutol® HP as solvent, and water as anti-solvent. The mean particle size of nanosuspension decreased to 43.05 nm when the mole fraction of ABN401 in THP, and mole fraction of ABN401 in TWM mixture were decreased to 0.04 and 0.1. The ultrasonicated nanosuspension appeared to give comparatively higher dissolution than micronized nanosuspension and provide a candidate formulation for in vivo purposes.  相似文献   

12.
Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.  相似文献   

13.
Interleukin-1β (IL-1β), a product of the NLRP3 inflammasome, modulates cardiac contractility and diastolic function. We proposed that OLT1177® (dapansutrile), a novel NLRP3 inhibitor, could preserve contractile reserve and diastolic function after myocardial infarction (MI). We used an experimental murine model of severe ischemic cardiomyopathy through the ligation of the left coronary artery without reperfusion, and after 7 days randomly assigned mice showing large anterior MI (>4 akinetic segments), increased left ventricular (LV) dimensions ([LVEDD] > 4.4 mm), and reduced function (LV ejection fraction < 40%) to a diet that was enriched with OLT1177® admixed with the chow in the diet at 3.75 g/kg (Group 1 [n = 10]) or 7.5 g/kg (Group 2 [n = 9]), or a standard diet as the no-treatment control group (Group 3 [n = 10]) for 9 weeks. We measured the cardiac function and contractile reserve with an isoproterenol challenge, and the diastolic function with cardiac catheterization at 10 weeks following the MI surgery. When compared with the control (Group 3), the mice treated with OLT1177 (Group 1 and 2) showed significantly greater preservation of their contractile reserve (the percent increase in the left ventricular ejection fraction [LVEF] after the isoproterenol challenge was +33 ± 11% and +40 ± 6% vs. +9 ± 7% in the standard diet; p < 0.05 and p < 0.005 for Group 1 and 2, respectively) and of diastolic function measured as the lower left ventricular end-diastolic pressure (3.2 ± 0.5 mmHg or 4.5 ± 0.5 mmHg vs. 10.0 ± 1.6 mmHg; p < 0.005 and p < 0.009 respectively). No differences were noted between the resting LVEF of the MI groups. These effects were independent of the effects on the ventricular remodeling after MI. NLRP3 inflammasome inhibition with OLT1177® can preserve β-adrenergic responsiveness and prevent left ventricular diastolic dysfunction in a large non-reperfused anterior MI mouse model. OLT1177® could therefore be used to prevent the development of heart failure in patients with ischemic cardiomyopathy.  相似文献   

14.
Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the β-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® β-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® β-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.  相似文献   

15.
Grapevine is susceptible to fungal diseases generally controlled by numerous chemical fungicides. Elicitors of plant defence are a way of reducing the use of these chemicals, but still provide inconsistent efficiency. Easy-to-analyse markers of grapevine responses to elicitors are needed to determine the best conditions for their efficiency and position them in protection strategies. We previously reported that the elicitor sulphated laminarin induced the emission of volatile organic compounds (VOCs) by grapevine leaves. The present study was conducted to characterise and compare VOC emissions in response to other elicitors. Bastid® was first used to test the conditions of VOC collection and analysis. Using SBSE-GC-MS, we detected several VOCs, including the sesquiterpene α-farnesene, in a time-dependent manner. This was correlated with the induction of farnesene synthase gene expression, in parallel with stilbene synthesis (another defence response), and associated to resistance against downy mildew. The other elicitors (Redeli®, Romeo®, Bion®, chitosan, and an oligogalacturonide) induced VOC emission, but with qualitative and quantitative differences. VOC emission thus constitutes a response of grapevine to elicitors of various chemical structures. Therefore, VOC analysis is relevant for studying the impact of environmental factors on grapevine defence responses and optimising the performance of elicitors in vineyards.  相似文献   

16.
We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB® sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L−1 level. Linearity was confirmed up to 200 µg L−1 and LOD values were between 0.06 and 1.98 µg L−1. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.  相似文献   

17.
Carvacrol (CV) is an essential oil with numerous therapeutic properties, including immunomodulatory activity. However, this effect has not been studied in nanoemulsion systems. The objective of this study was to develop an innovative carvacrol-loaded nanoemulsion (CVNE) for immunomodulatory action. The developed CVNE comprised of 5% w/w oily phase (medium chain triglycerides + CV), 2% w/w surfactants (Tween 80®/Span 80®), and 93% w/w water, and was produced by ultrasonication. Dynamic light scattering over 90 days was used to characterize CVNE. Cytotoxic activity and quantification of cytokines were evaluated in peripheral blood mononuclear cell (PBMC) culture supernatants. CVNE achieved a drug loading of 4.29 mg/mL, droplet size of 165.70 ± 0.46 nm, polydispersity index of 0.14 ± 0.03, zeta potential of −10.25 ± 0.52 mV, and good stability for 90 days. CVNE showed no cytotoxicity at concentrations up to 200 µM in PBMCs. CV diminished the production of IL-2 in the PBMC supernatant. However, CVNE reduced the levels of the pro-inflammatory cytokines IL-2, IL-17, and IFN-γ at 50 µM. In conclusion, a stable CVNE was produced, which improved the CV immunomodulatory activity in PBMCs.  相似文献   

18.
In this study, boric acid (BA) is employed as a crosslinking agent to improve the characteristics of two commonly used polymeric films, ethyl cellulose (EC) and polyvinyl alcohol (PVA), for topical drug delivery applications. The developed films are characterized by FTIR spectroscopy and SEM analysis. The results show that the surfaces of the prepared films are even and transparent, except for the BA-modified EC sample. The initial cumulative release for erythromycin (EM) is found to be 0.30 and 0.36 mg/mL for EC and PVA films, which drops to 0.25 and 0.20 mg/mL after BA crosslinking, respectively, after 1 h at 25 °C. Further, the developed formulations are stable for 75 days. Also, the antibacterial activity of the developed formulations is investigated against S. aureus (ATCC® 25923™ and ATCC® 29213™). The obtained data confirm that the application of BA as the crosslinking agent extends the release of EM from EC and PVA polymeric films. The findings of this study suggest that BA-crosslinked EC and PVA films are promising carriers for controlled topical drug delivery applications.  相似文献   

19.
Hot-melt extrusion (HME) has great advantages for the preparation of solid dispersion (SD), for instance, it does not require any organic solvents. Nevertheless, its application to high-melting-point and thermosensitive drugs has been rarely reported. In this study, thermally unstable curcumin (Cur) was used as a drug model. The HME process was systematically studied by adjusting the gradient temperature mode and residence time, with the content, crystallinity and dissolution of Cur as the investigated factors. The effects of barrel temperature, screw speed and cooling rate on HME were also examined. Solubility parameters and the Flory–Huggins method were used to evaluate the miscibility between Cur and carriers. Differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, equilibrium solubility and in vitro and in vivo experiments were used to characterize and evaluate the results. An amorphous Cur SD was successfully obtained, increasing the solubility and release of Cur. In the optimal process, the mass ratio of Cur to Eudragit® E PO (EPO) was 1:4 and the barrel temperature was set at a gradient heating mode (130 °C–135 °C–140 °C–145 °C–150 °C–155 °C–160 °C) at 100 rpm. Related pharmacokinetic test results also showed the improved bioavailability of the drug in rats. In a pharmacodynamic analysis of Sprague–Dawley rats, the Cmax and the bioavailability of the Cur-EPO SD were 2.6 and 1.5 times higher than those of Cur, respectively. The preparation of the amorphous SD not only provided more solubility but also improved the bioavailability of Cur, which provides an effective way to improve the bioavailability of BCS II drugs.  相似文献   

20.
In this study, a controlled-release formulation of duplex herbicides, namely, 2,4,5-trichlorophenoxybutyric acid (TBA) and 3,4-dichlorophenoxy-acetic acid (3,4D), was simultaneously embedded into Zn-Al-layered double hydroxides (LDHs). The resulting nanohybrid Zinc-Aluminium-3,4D-TBA (ZADTX) was composed of a well-ordered crystalline layered structure with increasing basal spacing from 8.9 Å to 20.0 Å in the Powder X-ray Diffraction (PXRD) with 3,4D and TBA anions located in the gallery of LDHs with bilayer arrangement. The release of 3,4D and TBA fit the pseudo-second-order model. This duplex nanohybrid possessed a well-controlled release property (53.4% release from TBA and 27.8% release from 3,4D), which was highly effective, requiring the use of a small quantity and, hence, environmentally safer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号