首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersive liquid–liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.  相似文献   

2.
A new method has been developed for liquid–liquid microextraction utilizing a circulation microchannel. A glass microchemical chip having a circular shallow microchannel in contact with a surrounding deeper microchannel was fabricated by a two-step photolithographic wet-etching technique. Surface modification reagent was selectively introduced to the shallow channel by utilizing capillary force, and the surface of the shallow channel was selectively made hydrophobic. With the aid of the hydrophobic/hydrophilic surface patterning, it was possible to keep organic solvent in the circular channel while the aqueous sample solution was continuously flowing in the deep channel. As a result, concentration extraction from sample solution to stationary extractant with a nanoliter scale volume became possible. Concentration extraction has been difficult in a multiphase continuous flow. Function of the newly developed microextraction system was verified with methyl red as a test sample, and concentration extraction to reach equilibrium was successfully carried out. A novel surface modification method utilizing frozen liquid as a masking material was also developed as a reverse process to make the shallow channel hydrophilic and the deep channel hydrophobic. Visualization of circulation motion inside the circular shallow channel induced by flow in the deep channel was observed with a particle tracing method.  相似文献   

3.
A stir membrane liquid phase microextraction procedure working under the three-phase mode is proposed for the first time for the determination of six anti-inflammatory drugs in human urine. The target compounds are isolated and preconcentrated using a special device that integrates the extractant and the stirring element. An alkaline aqueous solution is used as extractant phase while 1-octanol is selected as supported liquid membrane solvent. After the extraction, all the analytes are determined by liquid chromatography (LC) with ultraviolet detection (UV). The analytical method is optimized considering the main involved variables (e.g., pH of donor and acceptor phases, extraction time, stirring rate) and the results indicate that the determination of anti-inflammatory drugs at therapeutic and toxic levels is completely feasible. The limits of detection are in the range from 12.6 (indomethacin) to 30.7 μg/L (naproxen). The repeatability of the method, expressed as relative standard deviation (RSD, n = 5) varies between 3.4% (flurbiprofen) and 5.7% (ketoprofen), while the enrichment factors are in the range from 35.0 (naproxen) to 72.5 (indomethacin).  相似文献   

4.
A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 μg kg−1 and 70.0 μg kg−1 were 93.0–109.5% and 95.4–107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 μg kg−1 of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 μg kg−1. The linearity of the method ranged from 10 to 100 μg kg−1 for the three fungicides, with correlation coefficients (r 2) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC–ECD can satisfy the requirements for the determination of fungicides in apple samples. Figure Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD) allows satisfactory determination of fungicides in apple samples  相似文献   

5.
In this study, dispersive liquid–liquid microextraction (DLLME) combined with ultra-high-pressure liquid chromatography (UHPLC)–tunable ultraviolet detection (TUV), has been developed for pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in aqueous samples. The key factors, including the kind and volume of extraction solvent and dispersive solvent, extraction time, salt effect and pH, which probably affect the extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.0500–100 μg L?1 for TCS, 0.0250–50.0 μg L?1 for TCC, and 0.500–100 μg L?1 for M-TCS, respectively, with correlation coefficients (r2) > 0.9945. The limits of detection (LODs) ranged from 45.1 to 236 ng L?1. TCS in domestic waters was detected with the concentration of 2.08 μg L?1. The spiked recoveries of three target compounds in river water, irrigating water, reclaimed water and domestic water samples were achieved in the range of 96.4–121%, 64.3–84.9%, 77.2–115% and 75.5–106%, respectively. As a result, this method can be successfully applied for the rapid and convenient determination of TCS, TCC and M-TCS in real water samples.  相似文献   

6.
During the past 7 years and since the introduction of dispersive liquid–liquid microextraction (DLLME), the method has gained widespread acceptance as a simple, fast, and miniaturized sample preparation technique. Owing to its simplicity of operation, rapidity, low cost, high recovery, and low consumption of organic solvents and reagents, it has been applied for determination of a vast variety of organic and inorganic compounds in different matrices. This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications. The main focus is on recent technological advances and important applications of DLLME. In this review, six important aspects in the development of DLLME are discussed: (1) the type of extraction solvent, (2) the type of disperser solvent, (3) combination of DLLME with other extraction methods, (4) automation of DLLME, (5) derivatization reactions in DLLME, and (6) the application of DLLME for metal analysis. Literature published from 2010 to April 2013 is covered.  相似文献   

7.
A simple solvent microextraction method termed vortex-assisted liquid–liquid microextraction (VALLME) coupled with gas chromatography micro electron-capture detector (GC-μECD) has been developed and used for the pesticide residue analysis in water samples. In the VALLME method, aliquots of 30 μL toluene used as extraction solvent were directly injected into a 25 mL volumetric flask containing the water sample. The extraction solvent was dispersed into the water phase under vigorously shaking with the vortex. The parameters affecting the extraction efficiency of the proposed VALLME such as extraction solvent, vortex time, volumes of extraction solvent and salt addition were investigated. Under the optimum condition, enrichment factors (EFs) in a range of 835–1115 and limits of detection below 0.010 μg L−1 were obtained for the determination of target pesticides in water. The calculated calibration curves provide high levels of linearity yielding correlation coefficients (r2) greater than 0.9958 with the concentration level ranged from 0.05 to 2.5 μg L−1. Finally, the proposed method has been successfully applied to the determination of pesticides from real water samples and acceptable recoveries over the range of 72–106.3% were obtained.  相似文献   

8.
Dispersive liquid–liquid microextraction (DLLME) high-performance liquid chromatography (HPLC) was developed for extraction and determination of triazines from honey. A room temperature ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6.], was used as extraction solvent and Triton X 114 was used as dispersant. A mixture of 175 μL [C6MIM][PF6] and 50 μL 10% Triton X 114 was rapidly injected into the 20 mL honey sample by syringe. After extraction, phase separation was performed by centrifugation and the sedimented phase was analyzed by HPLC. Some experimental parameters, such as type and volume of extraction solvent, concentration of dispersant, pH value of sample solution, salt concentration and extraction time were investigated and optimized. The detection limits for chlortoluron, prometon, propazine, linuron and prebane are 6.92, 5.84, 8.55, 8.59 and 5.31 μg kg−1, respectively. The main advantages of the proposed method are simplicity of operation, low cost, high enrichment factor and extraction solvent volume at microliter level. Honey samples were analyzed by the proposed method and obtained results indicated that the proposed method provides acceptable recoveries and precisions.  相似文献   

9.
A rapid, simple, and sensitive method was developed for lead preconcentration and separation in various real samples by dispersive liquid–liquid microextraction based on the freezing of floating organic drop. In this method, a suitable extraction solvent dissolved in a dispersive solvent was quickly syringed into the water sample so that the solution became turbid. Then, two phases were separated by centrifugation. The floating extractant droplet can be easily solidified on an ice bath and taken out of the water sample. Then, it can be liquefied instantly at room temperature, and analyte can be determined in it. In the creation of a hydrophobic complex with lead, 1-(2-pyridylazo)-2-naphthole (PAN) was used as the chelating agent. 1-Undecanol and acetone were used as extraction and disperser solvent. To achieve the highest recovery, some factors (type and volume of dispersive and extraction solvent, pH, PAN concentration, and salt concentration) were optimised. Under optimised conditions (pH = 9, 1.0 × 10–3 mol L?1 PAN, 15% w/v NaCl, 100 µL 1-undecanol, and 0.3 mL acetone), the lead calibration graph was linear from 1.5 to 80 μg L?1. The detection limit and preconcentration factor were 0.5 μg L?1 and 50, respectively. Lead was successfully determined in water and food (spinach, rice, potato, carrot, and black tea bag) samples by this method.  相似文献   

10.
The novelties of this approach are introducing the self-settled dispersive liquid–liquid microextraction technique to remove the centrifuging step, conducting the dispersive liquid–liquid microextraction in complex organic systems, applicability of water as disperser phase, and inclusion microextraction of charged porphyrins by nano-baskets of calix[4]arenes, which act as the settling agents as well as the inclusion ligands. Diacid p-tert-butylcalix[4]arene in the cone conformation was synthesized and used. The related parameters including ligand concentration, volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit (S/N?=?3) and precision (RSD, n?=?6) were determined to be 0.2–50, 0.07?μg?L?1 and 5.3%, respectively. The established method was applied to determine the target compound in five samples of live crude oil, were sampled from an Iranian offshore field. Owing to the overall differences (such as organic media, inclusion extraction, water-soluble ligands, etc.), the comparison of the proposed method with the traditional liquid–liquid microextraction was inapplicable. These results revealed that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems. Moreover, in those systems that the inclusion separation is not requested, it is possible to use a tertiary system including a proper extraction agent/solvent and calixarene phase, as settling agent, along with the aqueous disperser in the organic systems.  相似文献   

11.
The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid–liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).  相似文献   

12.
We report on the determination of the triazine herbicides ametryne, prometryne, terbuthylazine and terbutryn in water samples. The herbicides are extracted by in-situ ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and then determined by high-performance liquid chromatography. This is a new method for extraction that has the advantages of requiring less volume of ionic liquid (IL) than other methods and at the same time is quite fast. The type and volume of IL, the type and volume of disperser, irradiation temperature, extraction time and salt concentration were optimized. Figures of merit include linear regression coefficients between 0.9992 and 0.9995, acceptable recoveries (88.4–114?%), relative standard deviations of 1.6–6.2?%, and limits of detection between 0.52 and 1.3?μg?L?1.
Figure
Chromatograms of real (A) and spiked (B) water samples by the in situ ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction: (1) ametryne; (2) terbuthylazine; (3) prometryne and (4) terbutryn.  相似文献   

13.
A simple and efficient method, based on ultrasound-enhanced surfactant-assisted dispersive liquid–liquid microextraction (UESA-DLLME) followed by high-performance liquid chromatography (HPLC) has been developed for extraction and determination of ketoconazole and econazole nitrate in human blood samples. In this method, a common cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as dispersant. Chloroform (40 μL) as extraction solvent was added rapidly to 5 mL blood containing 0.068 mg mL−1 CTAB. The mixture was then sonicated for 2 min to disperse the organic chloroform phase. After the extraction procedure, the mixture was centrifuged to sediment the organic chloroform phase, which was collected for HPLC analysis. Several conditions, including type and volume of extraction solvent, type and concentration of the surfactant, ultrasound time, extraction temperature, pH, and ionic strength were studied and optimized. Under the optimum conditions, linear calibration curves were obtained in the ranges 4–5000 μg L−1 for ketoconazole and 8–5000 μg L−1 for econazole nitrate, with linear correlation coefficients for both >0.99. The limits of detection (LODs, S/N = 3) and enrichment factors (EFs) were 1.1 and 2.3 μg L−1, and 129 and 140 for ketoconazole and econazole nitrate, respectively. Reproducibility and recovery were good. The method was successfully applied to the determination of ketoconazole and econazole nitrate in human blood samples.  相似文献   

14.
The article describes a simple sample pretreatment procedure for the analysis of ten organophosphorus pesticides using dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS) in three distinctively different types of matrices: fresh fruits, fresh vegetables and dried herbs. The method was carefully developed, focusing on the chemistry of various dispersive solvents, to achieve simultaneous, comprehensive extraction and preconcentration in a great span of selected matrices. According to matrix-matched validation study, the set of optimized DLLME conditions has been proven robust to determine target OPPs within a wide linear range from 0.1 to 1000 μg L−1. With limited usage of organic extractants, remarkable enrichment factors up to 100-fold were obtained, enabling ultra-trace pesticide quantification down to sub-ppt levels at 0.12–4.92 ng kg−1. Practical application of the method was illustrated by quantitative recovery (70–119%) and good precision (2.6–10% R.S.D.) in a representative range of three fruits and four vegetable commodities featured by the CODEX Alimentarius classification as well as their unique matrix compositions. A careful selection of dried herbs was further classified based on their morphological structures to validate analytical ruggedness of the method. Compared with existing methods for food analysis vis-à-vis OPPs, the present method is superior in terms of high sample throughput, minimal solvent consumption, and small sample size requirement. An additional, significant aspect of this universal DLLME method is that it models sample pretreatment methods with wide coverage of analytical matrices that are more effective, more comprehensive, and more flexible than those currently being used.  相似文献   

15.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

16.
A dispersive liquid–liquid microextraction (DLLME) method for separation/preconcentration of ultra trace amounts of Co(II) and its determination with FAAS was developed. The DLLME behavior of Co(II) using Aliquat 336-chloride as ion pairing agent was systematically investigated. The factors influencing the ion pair formation and extraction by DLLME method were optimized. Under the optimized conditions for 150 µL of extraction solvent (carbon tetrachloride), 1.5 mL disperser solvent (acetonitrile) and 5 mL of sample, the enrichment factor was 30. The detection limit was 5.6 µg L?1 and the RSD for replicate measurements of 1 mg L?1 was 1.32 %. The calibration graph using the preconcentration system for cobalt was linear from 40 to 400 µg L?1 with a correlation coefficient of 0.999. The proposed method was successfully applied for determination of cobalt in black tea, paprika and marjoram real samples.  相似文献   

17.
This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1 g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69–97% (except for thiophanate-methyl and carbofuran, which were 53–63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320–4.66 μg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.  相似文献   

18.
Dispersive liquid–liquid microextraction (DLLME) has been proved to be a powerful tool for the rapid sample treatment of liquid samples providing at the same time high enrichment factors and extraction recoveries. A new, simple and easy to handle one step in-syringe set-up for DLLME is presented and critically discussed in this paper. The novel approach avoids the centrifugation step, typically off-line and time consuming, opening-up a new horizon on DLLME automation. The suitability of the proposal is evaluated by means of the determination of non-steroidal anti-inflammatory drugs in urine by liquid chromatography/ultraviolet detection. In the presented approach an ionic liquid is used as extractant. The target drugs can be determined in urine within the concentration range 0.02–10 μg mL−1, allowing their determination at therapeutic and toxic levels. Limits of detection were in the range from 8.3 ng mL−1 (indomethacin) to 32 ng mL−1 (ketoprofen). The repeatability of the proposed method expressed as RSD (n = 5) varied between 2.5% (for ketoprofen) and 8.6% (for indomethacin).  相似文献   

19.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

20.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography with fluorescence detector was applied for the determination of alkylphenols and their short-chained ethoxylates in water samples. Development of DLLME procedure included optimisation of some important parameters such as kind and volume of extracting and dispersing solvents. Under optimised conditions 50 μL of trichloroethylene in 1.5 mL of acetone were rapidly injected into 5 mL of a water sample. After centrifuging the organic phase containing the analytes was taken for evaporation with a gentle nitrogen purge and reconstituted to 50 μL of acetonitrile. The aliquot of this solution was analysed with the use of HPLC. For octylphenol (OP) and octylphenol ethoxylates (OPEOs) linearity was satisfactory in the range 8–1000 μg L−1 and for nonylphenol (NP) and nonylphenol ethoxylates (NPEOs) linearity was in the range from 50 to about 3000 μg L−1. Limit of quantitation was 0.1 μg L−1 for OP and OPEOs and 0.3 μg L−1 for NP and NPEOs. Satisfactory recoveries between 66 and 79% were obtained for environmental samples. The results showed that DLLME is a simple, rapid and sensitive analytical method for the preconcentration of trace amounts of alkylphenols and their ethoxylates in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号