首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
2.
3.
The pore scale mechanisms and network scale transient pattern of the immiscible displacement of a shear-thinning nonwetting oil phase (NWP) by a Newtonian wetting aqueous phase (WP) are investigated. Visualization imbibition experiments are performed on transparent glass-etched pore networks at a constant unfavorable viscosity ratio and varying values of the capillary number (Ca), and equilibrium contact angle (theta(e)). Dispersions of ozokerite in paraffin oil are used as the shear-thinning NWP, and aqueous solutions of PEG colored with methylene blue are used as the Newtonian WP. At high Ca values, the tip splitting and lateral spreading of WP viscous fingers are suppressed; at intermediate Ca values, the primary viscous fingers expand laterally with the growth of smaller capillary fingers; at low Ca values, network spanning clusters of capillary fingers separated by hydraulically conductive noninvaded zones of NWP arise. The spatial distribution of the mobility of shear-thinning NWP over the pore network is very broad. Pore network regions of low NWP mobility are invaded through a precursor advancement/swelling mechanism even at relatively high Ca and theta(e) values; this mechanism leads to irregular interfacial configurations and retention of a substantial amount of NWP along pore walls; it becomes the dominant mechanism in displacements performed at low Ca and theta(e) values. The residual NWP saturation increases and the end WP relative permeability decreases as Ca increases and both become more sensitive to this parameter as the shear-thinning behavior strengthens. The shear-thinning NWP is primarily entrapped in individual pores of the network rather than in clusters of pores bypassed by the WP. At relatively high flow rates, the amplitude of the variations of pressure drop, caused by fluid redistribution in the pore network, increase with shear-thinning strengthening, whereas at low flow rates, the motion of stable and unstable menisci in pores is reflected in strong pressure drop fluctuations.  相似文献   

4.
The electrophoresis of a concentrated dispersion of non-Newtonian drops in an aqueous medium, which has not been investigated theoretically in the literature, is analyzed under conditions of low zeta potential and weak applied electric field. The results obtained provide a theoretical basis for the characterization of the nature of an emulsion and a microemulsion system. A Carreau fluid, which has wide applications in practice, is chosen for the non-Newtonian drops, and the unit cell model of Kuwabara is adopted to simulate a dispersion. The effects of the key parameters of a dispersion, including its concentration, the shear-thinning nature of the drop fluid, and the thickness of the double layer, on the electrophoretic behavior of a drop are discussed. In general, the more significant the shear-thinning nature of the drop fluid is, the larger the mobility is, and this effect is pronounced as the thickness of the double layer decreases. However, if the double layer is sufficiently thick, this effect becomes negligible. In general, the higher the concentration of drops is, the smaller the mobility is; however, if the double layer is either sufficiently thin or sufficiently thick, this effect becomes unimportant.  相似文献   

5.
The influence of a charged boundary on the electrophoretic behavior of an entity in a non-Newtonian fluid is studied by considering a sphere at an arbitrary position in a spherical cavity filled with a Carreau fluid under the conditions of low surface potential and weak applied electric field. The dependence of the mobility of a sphere on its position in a cavity, the size of a cavity, the thickness of a double layer, and the nature of a fluid is investigated. In addition to the fact that the effect of shear-thinning is advantageous to the movement of a sphere, several other interesting results are also observed. For instance, if an uncharged sphere is in a positively charged cavity, where the electroosmotic flow and the induced charge on the sphere surface play a role, the effect of shear-thinning is important only if the thickness of the double layer is either sufficiently thin or sufficiently thick. However, this might not be the case if a positively charged sphere is in an uncharged cavity.  相似文献   

6.
The electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid is investigated theoretically. In addition to the boundary effect due to the presence of the pore, the influences of the thickness of double layer surrounding a particle and the properties of the fluid on the electrophoretic behavior of the particle are also examined. We show that, in general, the presence of the pore has the effect of retarding the movement of a particle. On the other hand, the shear-thinning nature of the liquid phase is advantageous to its movement. For both Newtonian and Carreau fluids, the mobility of a particle increases monotonically with the decrease in the thickness of double layer, but the mobility is more sensitive to the variation of the thickness of double layer in the latter. The mobility of a particle in a Carreau fluid is larger than that in the corresponding Newtonian fluid, and the difference between the two increases with the decrease in double-layer thickness; in addition, depending upon the values of the parameters assumed, the percentage difference can be in the order of 50%.  相似文献   

7.
8.
The electrophoresis of a rigid sphere in a Carreau fluid normal to a large disk is analyzed theoretically under the conditions of low surface potential and weak applied electric field. Previous analyses are extended to the case where a disk can be charged, and a more realistic electrostatic force formula is applied. We show that the qualitative behavior of a sphere depends largely on its distance from a disk, the thickness of double layer, and the nature of a fluid. In general, the presence of a disk has the effect of increasing the conventional hydrodynamic drag on a sphere, and a decrease in the thickness of the double layer surrounding a sphere has the effect of enhancing the shear-thinning effect. However, this might not be the case if a sphere is uncharged and a disk is charged, where the osmotic pressure field and the induced charge on the sphere surface can be significant. The shear-thinning effect is important only if the thickness of double layer is sufficiently thick. This result can play a significant role in practice such as in electrophoretic deposition, where the deposition electrode is charged and the fluid medium is usually of shearing-thinning nature.  相似文献   

9.
The electrophoretic behavior of a droplet in a spherical cavity subject to an alternating electric field is analyzed theoretically under the conditions of an arbitrary level of surface potential and double-layer thickness. The influences of the thickness of the double layer, the level of surface potential, the size of a droplet, the viscosity of the droplet fluid, and the frequency of the applied electric field on the electrophoretic behavior of a droplet are examined through numerical simulations. We show that, because of the effect of double-layer deformation, the magnitude of the electrophoretic mobility of a droplet could have a local maximum and the phase angle could have a negative (phase lead) local minimum as the frequency of the applied electric field varies. In general, the lower the surface potential, the thicker the double layer and the larger the viscosity of the droplet fluid, and the more significant the boundary effect, the smaller the magnitude of the electrophoretic mobility of a droplet.  相似文献   

10.
Summary The retention behavior of a set of polycyclic aromatic hydrocarbons in supercritical fluid chromatography have been studied on a chemically bonded stationary phase based upon a side chain liquid crystalline polymer (LCP) with carbon dioxide-based mobile phase. The effects of the mobile phase pressure, column temperature and amount of mobile phase organic modifier have been investigated in order to detect a possible structural change in the liquid crystal polymer linked to the silica support. The influence of these factors on the selectivity coefficients has also been studied. Two distinctive behaviors with temperature are noted at low pressure on the one hand and at higher pressure on the other. This change in behavior is based on the density of the supercritical CO2 and the PAH volatility rather than on any specific stationary phase structural change. Both lower mobile phase pressure and amount of mobile phase modifier are required to obtain better selectivities. Better planarity recognition is observed in SFC than in HPLC with these new bonded liquid crystal stationary phases. The bonded liquid crystal phase is only weakly affected by the addition of organic modifier in the supercritical CO2.  相似文献   

11.
The effect of magnetic field on natural convection heat transfer in an L-shaped enclosure filled with a non-Newtonian fluid is investigated numerically. The governing equations are solved by finite-volume method using the SIMPLE algorithm. The power-law rheological model is used to characterize the non-Newtonian fluid behavior. It is revealed that heat transfer rate decreases for shear-thinning fluids (of power-law index, n?<?1) and increases for shear-thickening fluids (n?>?1) in comparison with the Newtonian ones. Thermal behavior of shear-thinning and shear-thickening fluids is similar to that of Newtonian fluids for the angle of enclosure α?<?60° and α?>?60°, respectively.  相似文献   

12.
Cho CC  Chen CL  Chen CK 《Electrophoresis》2012,33(5):743-750
A numerical investigation is performed into the mixing performance of electrokinetically driven non-Newtonian fluids in a wavy serpentine microchannel. The flow behavior of the non-Newtonian fluids is described using a power-law model. The simulations examine the effects of the flow behavior index, the wave amplitude, the wavy-wall section length, and the applied electric field strength on the mixing performance. The results show that the volumetric flow rate of shear-thinning fluids is higher than that of shear-thickening fluids, and therefore results in a poorer mixing performance. It is shown that for both types of fluid, the mixing performance can be enhanced by increasing the wave amplitude, extending the length of the wavy-wall section, and reducing the strength of the electric field. Thus, although the mixing efficiency of shear-thinning fluids is lower than that of shear-thickening fluids, the mixing performance can be improved through an appropriate specification of the flow and geometry parameters. For example, given a shear-thinning fluid with a flow behavior index of 0.8, a mixing efficiency of 87% can be obtained by specifying the wave amplitude as 0.7, the wavy-wall section length as five times the characteristic length, the nondimensional Debye-Huckel parameter as 100, and the applied electric field strength as 43.5 V/cm.  相似文献   

13.
In this study, we explore the global phase behavior of a simple model for self-associating fluids where association reduces the strength of the dispersion interactions between bonded particles. Recent research shows that this type of behavior likely explains the thermodynamic properties of strongly polar fluids and certain micellar solutions. Based on Wertheim's theory of associating liquids [M. S. Wertheim, J. Stat. Phys. 42, 459 (1986); 42, 477 (1986)], our model takes into account the effect that dissimilar particle interactions have on the equilibrium constant for self-association in the system. We find that weaker interactions between bonded molecules tend to favor the dissociation of chains at any temperature and density. This effect stabilizes a monomeric liquid phase at high densities, enriching the global phase behavior of the system. In particular, for systems in which the energy of mixing between bonded and unbonded species is positive, we find a triple point involving a vapor, a dense phase of chain aggregates, and a monomeric liquid. Phase coexistence between the vapor and the monomeric fluid is always more stable at temperatures above the triple point, but a highly associated fluid may exist as a metastable phase under these conditions. The presence of this metastable phase may explain the characteristic nucleation behavior of the liquid phase in strongly dipolar fluids.  相似文献   

14.
Extensive molecular dynamics simulations are performed at 6% polydispersity to investigate the phase diagram of a polydisperse hard-sphere fluid and the dynamical behavior in each phase. As the volume fraction phi is increased, the existence of a supercooled liquid is suggested above phi = 0.5524 by the mean-field analysis proposed recently. The first-order phase transition from supercooled liquid to crystal is then shown to occur around phi = 0.5630. The occurrence of re-entrant melting, a first-order phase transition from crystal to supercooled liquid, is also found around phi = 0.5715. The existence of the glass transition is thus suggested, even in the hard-sphere fluid with small polydispersity.  相似文献   

15.
The electrophoresis of colloidal particles has been studied extensively in the past. Relevant analyses, however, are focused mainly on the electrophoretic behavior of a particle in a Newtonian fluid. Recent advances in science and technology suggest that the electrophoresis conducted in a non-Newtonian fluid can play a role in practice. Here, the electrophoresis of a concentrated colloidal dispersion in a Carreau fluid is investigated under the conditions of arbitrary electrical potential where the effect of double-layer polarization may be significant. A pseudo-spectral method coupled with a Newton-Raphson iteration scheme is used to solve the governing equations, which describe the electric, the flow, and the concentration fields. The results of numerical simulation reveal that, due to the effect of shear thinning, the electrophoretic mobility for the case of a Carreau fluid is greater than for that of a Newtonian fluid. Also, the higher the surface potential of a particle, the more significant the non-Newtonian nature of a Carreau fluid on its electrophoretic mobility.  相似文献   

16.
Locke BR 《Electrophoresis》2002,23(16):2745-2754
The method of volume averaging has been used to determine the effective electrophoretic mobility and dispersion coefficients for molecular transport of point-like solutes in a two-phase porous medium where the electrical conductivity and the diffusion and mobility coefficients may vary in both phases. The formal theory, derived in previous work, is numerically evaluated for cases where the obstacle phase has a large or small conductivity relative to the fluid phase and where the diffusion coefficient of the solute in the obstacle phase can be large or small relative to that in the fluid phase. In agreement with previous Monte Carlo methods, the effective electrophoretic mobility is not a function of media conductivity or electric field when the obstacles are impermeable to solute transport or have small diffusion solute diffusion coefficients. However, the dispersion coefficient is a strong function of electric field and varies with obstacle conductivity when diffusive transport is small in the obstacles relative to the fluid. In contrast, the effective electrophoretic mobility is a function of electric field when conductivity of the obstacles is much larger than the fluid and when the obstacles are very permeable to solute but have low electrical conductivity.  相似文献   

17.
We present molecular simulation data for viscosity, self-diffusivity, and the local structural ordering of (i) a hard-sphere fluid and (ii) a square-well fluid with short-range attractions. The latter fluid exhibits a region of dynamic anomalies in its phase diagram, where its mobility increases upon isochoric cooling, which is found to be a subset of a larger region of structural anomalies, in which its pair correlations strengthen upon isochoric heating. This "cascade of anomalies" qualitatively resembles that found in recent simulations of liquid water. The results for the hard-sphere and square-well systems also show that the breakdown of the Stokes-Einstein relation upon supercooling occurs for conditions where viscosity and self-diffusivity develop different couplings to the degree of pairwise structural ordering of the liquid. We discuss how these couplings reflect dynamic heterogeneities. Finally, we note that the simulation data suggest how repulsive and attractive glasses may generally be characterized by two distinct levels of short-range structural order.  相似文献   

18.
Recent studies have demonstrated the strong influences of fluid rheological properties on insulator-based dielectrophoresis (iDEP) in single-constriction microchannels. However, it is yet to be understood how iDEP in non-Newtonian fluids depends on the geometry of insulating structures. We report in this work an experimental study of fluid rheological effects on streaming DEP in a post-array microchannel that presents multiple contractions and expansions. The iDEP focusing and trapping of particles in a viscoelastic polyethylene oxide solution are comparable to those in a Newtonian buffer, which is consistent with the observations in a single-constriction microchannel. Similarly, the insignificant iDEP effects in a shear-thinning xanthan gum solution also agree with those in the single-constriction channel except that gel-like structures are observed to only form in the post-array microchannel under large DC electric fields. In contrast, the iDEP effects in both viscoelastic and shear-thinning polyacrylamide solution are significantly weaker than in the single-constriction channel. Moreover, instabilities occur in the electroosmotic flow and appear to be only dependent on the DC electric field. These phenomena may be associated with the dynamics of polymers as they are electrokinetically advected around and through the posts.  相似文献   

19.
We report on nonequilibrium molecular dynamics (NEMD) simulations results on the shear viscosity of liquid copper, modeled by a many-body embedded-atoms model potential. Because conventional NEMD methods are restricted to very high shear rates (at least of the order of 10(10) s(-1), that is several orders of magnitude larger than those accessible by experiment), previous work only provided access to the response of the fluid in the shear-thinning regime. Using the transient-time correlation function formalism, we show how NEMD simulations can be extended to study the rheological properties of liquid copper subjected to low, experimentally accessible, shear rates. Our results provide a full picture of the rheology of the system, in the Newtonian regime as well as in the shear-thinning regime.  相似文献   

20.
The impact of non-Newtonian behavior and the dynamic contact angle on the rise dynamics of a power law liquid in a vertical capillary is studied theoretically and experimentally for quasi-steady-state flow. An analytical solution for the time evolution of the meniscus height is obtained in terms of a Gaussian hypergeometric function, which in the case of a Newtonian liquid reduces to the Lucas-Washburn equation modified by the dynamic contact angle correction. The validity of the solution is checked against experimental data on the rise dynamics of a shear-thinning cmc solution in a glass microcapillary, and excellent agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号