首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the problem of the global exponential stability for neutral-type impulsive neural networks with mixed delays and Markovian jumping parameters. The mixed delays include discrete and distributed time-delays and the jumping parameters are generated from a continuous time discrete state homogenous Markov process. Based on the Lyapunov functional, a sufficient criterion is derived in terms of linear matrix equality (LMI).  相似文献   

2.
This paper investigates delay-dependent robust exponential state estimation of Markovian jumping fuzzy neural networks with mixed random time-varying delay. In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the robust exponential state estimation of Markovian jumping Hopfield neural networks with mixed random time-varying delays. Moreover probabilistic delay satisfies a certain probability-distribution. By introducing a stochastic variable with a Bernoulli distribution, the neural networks with random time delays is transformed into one with deterministic delays and stochastic parameters. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error is globally exponentially stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay-dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving a delay-dependent LMI. Finally some numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

3.
In this paper, the dynamic analysis problem is considered for a new class of Markovian jumping impulsive stochastic Cohen–Grossberg neural networks (CGNNs) with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belonging to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the Lyapunov–Krasovskii functional and stochastic stability theory, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities. Some asymptotic stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be easily calculated by LMI Toolbox in Matlab. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some existing results in the literature.  相似文献   

4.
In this paper, we investigate the robust stability of uncertain fuzzy Markovian jumping Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays. A new delay-dependent stability condition is derived under uncertain switching probabilities by Takagi–Sugeno fuzzy model. Based on the linear matrix inequality (LMI) technique, upper bounds for the discrete and distributed delays are calculated using the LMI toolbox in MATLAB. Numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

5.
将一类具有混合时滞随机神经网络均方渐近稳定的判据推广到不确定神经网络的鲁棒稳定性,所导出的判据都表示为线性矩阵不等式(LMI)的形式,可通过使用一些标准的数值方法求解.最后给出了一个简单的例子说明所提出的判定条件的有效性和可应用性.  相似文献   

6.
In this paper, we investigate exponential stability for stochastic BAM networks with mixed delays. The mixed delays include discrete and distributed time-delays. The purpose of this paper is to establish some criteria to ensure the delayed stochastic BAM neural networks are exponential stable in the mean square. A sufficient condition is established by consructing suitable Lyapunov functionals. The condition is expressed in terms of the feasibility to a couple LMIs. Therefore, the exponential stability of the stochastic BAM networks with discrete and distributed delays can be easily checked by using the numerically efficient Matlab LMI toobox. A simple example is given to demonstrate the usefulness of the derived LMI-based stability conditions.  相似文献   

7.
In this paper, the stability analysis problem is investigated for a class of Markovian jumping genetic regulatory networks (GRNs) with mixed time delays (discrete time delays and distributed time delays) and stochastic perturbations. The main purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid and protein is asymptotically stable. By utilizing a more general Lyapunov-Krasovskii functional based on the idea of “delay decomposing” and the LMI (linear matrix inequality) technique, we derive sufficient delay-dependent conditions ensuring the asymptotically stability of the GRNs with mixed time delays and noise perturbations in terms of LMI. Finally, simulation examples are exploited to illustrate the effectiveness of the developed theoretical results.  相似文献   

8.
In this paper, the global asymptotic and exponential stability are investigated for a class of neural networks with both the discrete and distributed time-varying delays. By using appropriate Lyapunov–Krasovskii functional and linear matrix inequality (LMI) technique, several delay-dependent sufficient conditions are obtained to guarantee the global asymptotic and exponential stability of the addressed neural networks. These conditions are expressed in terms of LMIs, and are dependent on both the discrete and distributed time delays. Therefore, the stability of the neural networks can be checked readily by resorting to the Matlab LMI toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the differentiability of the discrete and distributed time-varying delays, which means that our results generalize and further improve those in the earlier publications. A simulation example is given to show the effectiveness and less conservatism of the obtained conditions.  相似文献   

9.
In this paper, the global asymptotical stability analysis problem is considered for a class of Markovian jumping stochastic Cohen–Grossberg neural networks (CGNNs) with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. An alternative delay-dependent stability analysis result is established based on the linear matrix inequality (LMI) technique, which can easily be checked by utilizing the numerically efficient Matlab LMI toolbox. Neither system transformation nor free weight matrix via Newton–Leibniz formula is required. Two numerical examples are provided to show that the proposed results significantly improve the allowable upper and lower bounds of delays over some existing results in the literature.  相似文献   

10.
The paper is concerned with a stability analysis problem for neural networks with Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process, which are governed by a Markov process with discrete and finite state space. A new type of Markovian jumping matrix Pi is introduced in this paper. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the lower conservatism and the effectiveness of the proposed LMI conditions.  相似文献   

11.
This article discusses the issue of robust stability analysis for a class of Markovian jumping stochastic neural networks (NNs) with probabilistic time‐varying delays. The jumping parameters are represented as a continuous‐time discrete‐state Markov chain. Using the stochastic stability theory, properties of Brownian motion, the information of probabilistic time‐varying delay, the generalized Ito's formula, and linear matrix inequality (LMI) technique, some novel sufficient conditions are obtained to guarantee the stochastical stability of the given NNs. In particular, the activation functions considered in this article are reasonably general in view of the fact that they may depend on Markovian jump parameters and they are more general than those usual Lipschitz conditions. The main features of this article are described in the following: first one is that, based on generalized Finsler lemma, some improved delay‐dependent stability criteria are established and the second one is that the nonlinear stochastic perturbation acting on the system satisfies a class of Lipschitz linear growth conditions. By resorting to the Lyapunov–Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established using an efficient LMI approach. Finally, two numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–72, 2016  相似文献   

12.
This paper deals with the exponential synchronization problem for a class of stochastic jumping chaotic neural networks with mixed delays and sector bounded nonlinearities. The mixed time delays under consideration comprise both discrete time-varying delays and distributed time delays. By applying the Finsler’s Lemma and constructing appropriate Lyapunov-Krasovskii functional based on delay partitioning, several improved delay-dependent feedback controllers with sector nonlinearities are developed to achieve the synchronization in mean square in terms of linear matrix inequalities. It is established theoretically that two special cases of the obtained criteria are less conservative than some existing results but including fewer slack variables. As the present conditions involve no free weighting matrices, the computational burden is largely reduced. One numerical example is provided to demonstrate the effectiveness of the theoretical results.  相似文献   

13.
In this paper, the problem of stochastic stability for a class of time-delay Hopfield neural networks with Markovian jump parameters is investigated. The jumping parameters are modeled as a continuous-time, discrete-state Markov process. Without assuming the boundedness, monotonicity and differentiability of the activation functions, some results for delay-dependent stochastic stability criteria for the Markovian jumping Hopfield neural networks (MJDHNNs) with time-delay are developed. We establish that the sufficient conditions can be essentially solved in terms of linear matrix inequalities.  相似文献   

14.
In this paper we study the stability for a class of stochastic jumping bidirectional associative memory (BAM) neural networks with time-varying and distributed delays. To the best of our knowledge, this class of stochastic jumping BAM neural networks with time-varying and distributed delays has never been investigated in the literature. The main aim of this paper tries to fill the gap. By using the stochastic stability theory, the properties of a Brownian motion, the generalized Ito’s formula and linear matrix inequalities technique, some novel sufficient conditions are obtained to guarantee the stochastically exponential stability of the trivial solution or zero solution. In particular, the activation functions considered in this paper are fairly general since they may depend on Markovian jump parameters and they are more general than those usual Lipschitz conditions. Also, the derivative of time delays is not necessarily zero or small than 1. In summary, the results obtained in this paper extend and improve those not only with/without noise disturbances, but also with/without Markovian jump parameters. Finally, two interesting examples are provided to illustrate the theoretical results.  相似文献   

15.
This paper deals with the global exponential stability analysis of neutral systems with Markovian jumping parameters and interval time-varying delays. The time-varying delay is assumed to belong to an interval, which means that the lower and upper bounds of interval time-varying delays are available. A new global exponential stability condition is derived in terms of linear matrix inequality (LMI) by constructing new Lyapunov-Krasovskii functionals via generalized eigenvalue problems (GEVPs). The stability criteria are formulated in the form of LMIs, which can be easily checked in practice by Matlab LMI control toolbox. Two numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.  相似文献   

16.
In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the state estimation of uncertain Markovian jumping Hopfield neural networks with mixed interval time‐varying delays. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error are globally asmptotically stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay‐dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. Finally a numerical example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the general decay pathwise stability conditions on a class of stochastic neural networks with mixed delays by applying Lasalle method. The mixed time delays comprise both time-varying delays and infinite distributed delays. The contributions are as follows: (1)?we extend the Lasalle-type theorem to cover stochastic differential equations with mixed delays; (2)?based on the stochastic Lasalle theorem and the M-matrix theory, new criteria of general decay stability, which includes the almost surely exponential stability and the almost surely polynomial stability and the partial stability, for neural networks with mixed delays are established. As an application of our results, this paper also considers a two-dimensional delayed stochastic neural networks model.  相似文献   

18.
This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.  相似文献   

19.
In this paper, a general model of an array of N linearly coupled delayed neural networks with Markovian jumping hybrid coupling is introduced. The hybrid coupling consists of constant coupling, discrete and distributed time-varying delay coupling. The complex dynamical network jumps from one mode to another according to a Markovian chain, where all the coupling configurations are also dependent on mode switching. Meanwhile, all the coupling terms are subjected to stochastic disturbances which are described in terms of a Brownian motion. By adaptive approach, some sufficient criteria have been derived to ensure the synchronization in an array of jump neural networks with mixed delays and hybrid coupling in mean square. Surprisingly, it is found that complex networks with two different structure can also be synchronized according to known probability matrix. Finally, an example illustrated by switching between small-world networks and nearest-neighbor networks is given to show the effectiveness of the proposed criteria.  相似文献   

20.
In this paper, the problems of determining the global exponential stability and estimating the exponential convergence rate are investigated for a class of neural networks with mixed discrete and distributed time-varying delays. By employing a new Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is exploited to establish sufficient easy-to-test conditions for the neural networks to be globally exponentially stable, which can be readily solved by using the numerically efficient Matlab LMI toolbox. Three numerical examples are provided to demonstrate the effectiveness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号