首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this work, we consider nonlinear eigenvalue problems that depend on an additional parameter and our interest is to track several eigenvalues as this parameter varies. Based on the concept of invariant pairs, a theoretically sound and reliable numerical continuation procedure is developed. Particular attention is paid to the situation when the procedure approaches a singularity, that is, when eigenvalues included in the invariant pair collide with other eigenvalues. For the real generic case, it is proven that such a singularity only occurs when two eigenvalues collide on the real axis. It is shown how this situation can be handled numerically by an appropriate expansion of the invariant pair. The viability of our continuation procedure is illustrated by a numerical example.  相似文献   

2.
We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences from the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subsequently. The purpose of this work is to show that the concept of invariant pairs offers a way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon. To demonstrate the use of this concept in the development of numerical methods, we have developed a novel block Newton method for computing such invariant pairs. Algorithmic aspects of this method are considered and a few academic examples demonstrate its viability.  相似文献   

3.
In this paper we study both direct and inverse eigenvalue problems for diagonal-plus-semiseparable (dpss) matrices. In particular, we show that the computation of the eigenvalues of a symmetric dpss matrix can be reduced by a congruence transformation to solving a generalized symmetric definite tridiagonal eigenproblem. Using this reduction, we devise a set of recurrence relations for evaluating the characteristic polynomial of a dpss matrix in a stable way at a linear time. This in turn allows us to apply divide-and-conquer eigenvalue solvers based on functional iterations directly to dpss matrices without performing any preliminary reduction into a tridiagonal form. In the second part of the paper, we exploit the structural properties of dpss matrices to solve the inverse eigenvalue problem of reconstructing a symmetric dpss matrix from its spectrum and some other informations. Finally, applications of our results to the computation of a QR factorization of a Cauchy matrix with real nodes are provided.  相似文献   

4.
The global Arnoldi method can be used to compute exterior eigenpairs of a large non-Hermitian matrix A, but it does not work well for interior eigenvalue problems. Based on the global Arnoldi process that generates an F-orthonormal basis of a matrix Krylov subspace, we propose a global harmonic Arnoldi method for computing certain harmonic F-Ritz pairs that are used to approximate some interior eigenpairs. We propose computing the F-Rayleigh quotients of the large non-Hermitian matrix with respect to harmonic F-Ritz vectors and taking them as new approximate eigenvalues. They are better and more reliable than the harmonic F-Ritz values. The global harmonic Arnoldi method inherits convergence properties of the harmonic Arnoldi method applied to a larger matrix whose distinct eigenvalues are the same as those of the original given matrix. Some properties of the harmonic F-Ritz vectors are presented. As an application, assuming that A is diagonalizable, we show that the global harmonic Arnoldi method is able to solve multiple eigenvalue problems both in theory and in practice. To be practical, we develop an implicitly restarted global harmonic Arnoldi algorithm with certain harmonic F-shifts suggested. In particular, this algorithm can be adaptively used to solve multiple eigenvalue problems. Numerical experiments show that the algorithm is efficient for the eigenproblem and is reliable for quite ill-conditioned multiple eigenproblems.  相似文献   

5.
We consider the existence of distributional (or L 2 ) solutions of the matrix refinement equation where P is an r×r matrix with trigonometric polynomial entries. One of the main results of this paper is that the above matrix refinement equation has a compactly supported distributional solution if and only if the matrix P (0) has an eigenvalue of the form 2 n , . A characterization of the existence of L 2 -solutions of the above matrix refinement equation in terms of the mask is also given. A concept of L 2 -weak stability of a (finite) sequence of function vectors is introduced. In the case when the function vectors are solutions of a matrix refinement equation, we characterize this weak stability in terms of the mask. August 1, 1996. Date revised: July 28, 1997. Date accepted: August 12, 1997.  相似文献   

6.
We consider solving eigenvalue problems or model reduction problems for a quadratic matrix polynomial 2 −  − B with large and sparse A and B. We propose new Arnoldi and Lanczos type processes which operate on the same space as A and B live and construct projections of A and B to produce a quadratic matrix polynomial with the coefficient matrices of much smaller size, which is used to approximate the original problem. We shall apply the new processes to solve eigenvalue problems and model reductions of a second order linear input-output system and discuss convergence properties. Our new processes are also extendable to cover a general matrix polynomial of any degree.  相似文献   

7.
Volker Drygalla 《PAMM》2006,6(1):713-714
For badly conditioned Non-Hermite eigenvalue problems known iterative refinement procedures often fail. It is proposed to use extra precise iterative refinement in a precondition step. As preconditioners the matrix Q from the QR decomposition or at least the matrix of - even not very accurate - eigenvalues can be used. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We study the eigenvalues of a matrix A perturbed by a few special low-rank matrices. The perturbation is constructed from certain basis vectors of an invariant subspace of A, such as eigenvectors, Jordan vectors, or Schur vectors. We show that most of the eigenvalues of the low-rank perturbed matrix stayed unchanged from the eigenvalues of A; the perturbation can only change the eigenvalues of A that are related to the invariant subspace. Existing results mostly studied using eigenvectors with full column rank for perturbations, we generalize the results to more general settings. Applications of our results to a few interesting problems including the Google’s second eigenvalue problem are presented.  相似文献   

9.
We initiate the study of classical knots through the homotopy class of the nth evaluation map of the knot, which is the induced map on the compactified n-point configuration space. Sending a knot to its nth evaluation map realizes the space of knots as a subspace of what we call the nth mapping space model for knots. We compute the homotopy types of the first three mapping space models, showing that the third model gives rise to an integer-valued invariant. We realize this invariant in two ways, in terms of collinearities of three or four points on the knot, and give some explicit computations. We show this invariant coincides with the second coefficient of the Conway polynomial, thus giving a new geometric definition of the simplest finite-type invariant. Finally, using this geometric definition, we give some new applications of this invariant relating to quadrisecants in the knot and to complexity of polygonal and polynomial realizations of a knot.  相似文献   

10.
In this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the (S+ S-1){(\mathcal{S}+ \mathcal{S}^{-1})} -transform and Patel’s algorithm, the structure-preserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for eigenpairs of palindromic polynomial eigenvalue problems computed by palindromic quadratized eigenvalue problems are better than those via palindromic linearized eigenvalue problems or polyeig{{\texttt {polyeig}}} in MATLAB.  相似文献   

11.
For a matrix polynomial P(λ) and a given complex number μ, we introduce a (spectral norm) distance from P(λ) to the matrix polynomials that have μ as an eigenvalue of geometric multiplicity at least κ, and a distance from P(λ) to the matrix polynomials that have μ as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated perturbations of P(λ).  相似文献   

12.
Starting with the link invariant G (p,q,z) , a skein relation is introduced which enables us to calculate the polynomial starting with G (p,q,z) = 1, for the unknot. The relation between G (p,q,z) and the known 2-variable link invariant K (l,m) is shown. Then the polynomial of some common knots is calculated, also it is shown that this invariant failed to distinguish the Birmans pairs as well as Jones invariant.  相似文献   

13.
An algorithm for computing the invariant polynomials and the canonical triangular (trapezoidal) matrix for a polynomial matrix of full column rank is suggested. The algorithm is based on the Δ W-1 rank-factorization method for solving algebraic problems for polynomial matrices, previously suggested by the author. Bibliography: 3 titles.  相似文献   

14.
Novel memory‐efficient Arnoldi algorithms for solving matrix polynomial eigenvalue problems are presented. More specifically, we consider the case of matrix polynomials expressed in the Chebyshev basis, which is often numerically more appropriate than the standard monomial basis for a larger degree d. The standard way of solving polynomial eigenvalue problems proceeds by linearization, which increases the problem size by a factor d. Consequently, the memory requirements of Krylov subspace methods applied to the linearization grow by this factor. In this paper, we develop two variants of the Arnoldi method that build the Krylov subspace basis implicitly, in a way that only vectors of length equal to the size of the original problem need to be stored. The proposed variants are generalizations of the so‐called quadratic Arnoldi method and two‐level orthogonal Arnoldi procedure methods, which have been developed for the monomial case. We also show how the typical ingredients of a full implementation of the Arnoldi method, including shift‐and‐invert and restarting, can be incorporated. Numerical experiments are presented for matrix polynomials up to degree 30 arising from the interpolation of nonlinear eigenvalue problems, which stem from boundary element discretizations of PDE eigenvalue problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
For a nonnegative n × n matrix A, we find that there is a polynomial f(x)∈R[x] such that f(A) is a positive matrix of rank one if and only if A is irreducible. Furthermore, we show that the lowest degree such polynomial f(x) with tr f(A) = n is unique. Thus, generalizing the well-known definition of the Hoffman polynomial of a strongly connected regular digraph, for any irreducible nonnegative n × n matrix A, we are led to define its Hoffman polynomial to be the polynomial f(x) of minimum degree satisfying that f(A) is positive and has rank 1 and trace n. The Hoffman polynomial of a strongly connected digraph is defined to be the Hoffman polynomial of its adjacency matrix. We collect in this paper some basic results and open problems related to the concept of Hoffman polynomials.  相似文献   

16.
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization significantly increases the eigenvalue sensitivity with respect to structured perturbations. For all structures under consideration, we show that this cannot happen if the matrix polynomial is well scaled: there is always a structured linearization for which the structured eigenvalue condition number does not differ much. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.  相似文献   

17.
A simple algorithm for computing the first n powers of an n×n Hessenberg matrix with unit codiagonal or for evaluating a polynomial of degree ?n in such a matrix is proposed in this paper. Several applications of the algorithm are mentioned, including the solution of Lyapunov matrix equations associated with stability problems.  相似文献   

18.
Given a square matrix A, the inverse subspace problem is concerned with determining a closest matrix to A with a prescribed invariant subspace. When A is Hermitian, the closest matrix may be required to be Hermitian. We measure distance in the Frobenius norm and discuss applications to Krylov subspace methods for the solution of large‐scale linear systems of equations and eigenvalue problems as well as to the construction of blurring matrices. Extensions that allow the matrix A to be rectangular and applications to Lanczos bidiagonalization, as well as to the recently proposed subspace‐restricted SVD method for the solution of linear discrete ill‐posed problems, also are considered.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
For a polynomial with real roots, inequalities between those roots and the roots of the derivative are demonstrated and translated into eigenvalue inequalities for a hermitian matrix and its submatrices. For example, given an n-by-n positive definite hermitian matrix with maximum eigenvalue λ, these inequalities imply that some principal submatrix has an eigenvalue exceeding [(n?1)n.  相似文献   

20.
The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace ${f(\underline {A})}$ can attain for a tuple of matrices ${\underline {A}}$ ? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix *-algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side—two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号