首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let us consider a smooth invariant surface S of a given ordinary differential equations system. In this work we develop an impulsive control method in order to assure that the trajectories of the controlled system converge toward the surface S. The method approach is based on a property of a certain class of invariant surfaces whose the dynamics associated to their transverse directions can be described by a non-autonomous linear system. This fact allows to define an impulsive system which drives the trajectories toward the surface S. Also, we set up a definition of local stability exponents which can be associated to such kind of invariant surface.  相似文献   

2.
In this paper we investigate the rate of convergence of the optimal value function of an infinite horizon discounted optimal control problem as the discount rate tends to zero. Using the Integration Theorem for Laplace transformations we provide conditions on averaged functionals along suitable trajectories yielding quadratic pointwise convergence. From this we derive under appropriate controllability conditions criteria for linear uniform convergence of the value functions on control sets. Applications of these results are given and an example is discussed in which both linear and slower rates of convergence occur depending on the cost functional.  相似文献   

3.
4.
We consider the problem of controlling a linear system of ordinary differential equations with a linear observable output. The system contains uncertain items (disturbances), for which we know only “hard” pointwise constraints. The problem of synthesizing a control that brings the trajectories of the system into a given target set in finite time is solved under weakened conditions without assuming that the control and the disturbance are of the same type. To this end, we suggest an approach that amounts to constructing an information set and a weakly invariant set with subsequent “aiming” of the first set at the second. Both stages are carried out in a finite-dimensional space, which permits one to use an efficient algorithm for solving the synthesis problem approximately on the basis of the ellipsoidal calculus technique. The results are illustrated by an example in which the control of a linear oscillation system is constructed.  相似文献   

5.
Abstract

In this article, we initiate a study on optimal control problem for linear stochastic differential equations with quadratic cost functionals under generalized expectation via backward stochastic differential equations.  相似文献   

6.
7.
In this paper we solve an infinite-horizon linear quadratic control problem for a class of differential equations with countably infinite Markov jumps and multiplicative noise. The global solvability of the associated differential Riccati-type equations is studied under detectability hypotheses. A nonstochastic, operatorial approach is used. Some properties of the linear stochastic systems, such as stability, stabilizability and detectability, are also discussed on the basis of a new solution representation result. A generalized Ito's formula which applies to infinite dimensional stochastic differential equations with countably infinite Markov jumps is also provided.  相似文献   

8.
An hybrid Eulerian-Lagrangian numerical scheme is developed for a two-phase problem and four finite-difference schemes are compared. For this purpose, the problem of hydrodynamic and thermal interactions between a fuel spray and a mixing region of two laminar, unconfined axisymmetric jets is formulated in terms of a set of parabolic differential equations for the gas phase and a set of Lagrangian ordinary differential equations for the condensed phase. Consistent, second-order accurate hybrid numerical schemes, with the exception of the explicit scheme with an accuracy between linear and quadratic, are used to solve these equations. The subset of gas-phase equations has been solved by four different numerical methods: a predictor-corrector explicit method, a sequential implicit method, a block implicit method, and a symmetric operator-splitting method. The subsystem of liquid-phase equations is solved along the droplet trajectories by a second-order Runge-Kutta scheme. The computations have been made to predict the hydro-dynamic and thermal mixing regions of the gas phase as well as the trajectories of each individual group of droplets. In addition, the size, velocity and temperature associated with each group are predicted along these trajectories. The relative merits of the above four difference-schemes are discussed by constructing effectiveness curves. At low error tolerances, the sequential implicit method gives the best results, where for large error tolerances, the explicit and operator splitting give better results. The block implicit scheme is the least effective at all accuracy requirements.  相似文献   

9.
10.
In this paper, we will study the viable control problem for a class of uncertain nonlinear dynamical systems described by a differential inclusion. The goal is to construct a feedback control such that all trajectories of the system are viable in a map. Moreover, for any initial states no viable in the map, under the feedback control, all solutions of the system are steered to the map with an exponential convergence rate and viable in the map after a finite time T. In this case, an estimate of the time T of all trajectories attaining the map is given. In the nanomedicine system, an example inspired from cerebral embolism and cerebral thrombosis problems illustrates the use of our main results.  相似文献   

11.
In this paper, we will study an indefinite stochastic linear quadratic optimal control problem, where the controlled system is described by a stochastic differential equation with delay. By introducing the relaxed compensator as a novel method, we obtain the well-posedness of this linear quadratic problem for indefinite case. And then, we discuss the uniqueness and existence of the solutions for a kind of anticipated forward–backward stochastic differential delayed equations. Based on this, we derive the solvability of the corresponding stochastic Hamiltonian systems, and give the explicit representation of the optimal control for the linear quadratic problem with delay in an open-loop form. The theoretical results are validated as well on the control problems of engineering and economics under indefinite condition.  相似文献   

12.
We present active set methods to evaluate the exact analytic efficient solution set for multi-criteria convex quadratic programming problems (MCQP) subject to linear constraints. The idea is based on the observations that a strictly convex programming problem admits a unique solution, and that the efficient solution set for a multi-criteria strictly convex quadratic programming problem with linear equality constraints can be parameterized. The case of bi-criteria quadratic programming (BCQP) is first discussed since many of the underlying ideas can be explained much more clearly in the case of two objectives. In particular we note that the efficient solution set of a BCQP problem is a curve on the surface of a polytope. The extension to problems with more than two objectives is straightforward albeit some slightly more complicated notation. Two numerical examples are given to illustrate the proposed methods.  相似文献   

13.
We associate a functional of pairs of simply-connected regions D2 ? D1 to any quadratic differential on D1 with specified singularities. This functional is conformally invariant, monotonic, and negative. Equality holds if and only if the inner domain is the outer domain minus trajectories of the quadratic differential. This generalizes the simply-connected case of results of Z. Nehari [20], who developed a general technique for obtaining inequalities for conformal maps and domain functions from contour integrals and the Dirichlet principle for harmonic functions. Nehari’s method corresponds to the special case that the quadratic differential is of the form (?q)2 for a singular harmonic function q on D1.As an application we give a one-parameter family of monotonic, conformally invariant functionals which correspond to growth theorems for bounded univalent functions. These generalize and interpolate the Pick growth theorems, which appear in a conformally invariant form equivalent to a two-point distortion theorem of W. Ma and D. Minda [16].  相似文献   

14.
We consider a dynamical system approach to solve finite-dimensional smooth optimization problems with a compact and connected feasible set. In fact, by the well-known technique of equalizing inequality constraints using quadratic slack variables, we transform a general optimization problem into an associated problem without inequality constraints in a higher-dimensional space. We compute the projected gradient for the latter problem and consider its projection on the feasible set in the original, lower-dimensional space. In this way, we obtain an ordinary differential equation in the original variables, which is specially adapted to treat inequality constraints (for the idea, see Jongen and Stein, Frontiers in Global Optimization, pp. 223–236, Kluwer Academic, Dordrecht, 2003). The article shows that the derived ordinary differential equation possesses the basic properties which make it appropriate to solve the underlying optimization problem: the longtime behavior of its trajectories becomes stationary, all singularities are critical points, and the stable singularities are exactly the local minima. Finally, we sketch two numerical methods based on our approach.  相似文献   

15.
In this work we study the existence and asymptotic behavior of overtaking optimal trajectories for linear control systems with convex integrands. We extend the results obtained by Artstein and Leizarowitz for tracking periodic problems with quadratic integrands [2] and establish the existence and uniqueness of optimal trajectories on an infinite horizon. The asymptotic dynamics of finite time optimizers is examined. Accepted 31 January 1996  相似文献   

16.
《Fuzzy Sets and Systems》2004,143(2):189-209
In theory, an Algebraic Riccati Equation (ARE) scheme applicable to robust H quadratic stabilization problems of a class of uncertain fuzzy systems representing a nonlinear control system is investigated. It is proved that existence of a set of solvable AREs suffices to guarantee the quadratic stabilization of an uncertain fuzzy system while satisfying H-norm bound constraint. It is also shown that a stabilizing control law is reminiscent of an optimal control law found in linear quadratic regulator, and a linear control law can be immediately discerned from the stabilizing one. In practice, the minimal solution to a set of parameter dependent AREs is somewhat stringent and, instead, a linear matrix inequalities formulation is suggested to search for a feasible solution to the associated AREs. The proposed method is compared with the existing fuzzy literature from various aspects.  相似文献   

17.
The paper is devoted to the investigation of the behavior of trajectories of a hybrid system on a plane consisting of a set of two-dimensional systems of linear differential equations and a discrete component—a rule for jumping from one system to another one when the trajectory of the system reaches the boundary of the domain of its consideration. The notion of quasiperiodic and asymptotically quasiperiodic trajectory is introduced; the structure of the set of initial positions that quasiperiodic or asymptotically quasiperiodic trajectories can be issued from is investigated. The Zeno behavior (an infinite number of jumps between systems of differential equations in a finite amount of time) is studied; sufficient conditions for a trajectory not to exhibit this type of behavior are formulated.  相似文献   

18.
Peter Benner  Jens Saak 《PAMM》2010,10(1):591-592
The linear quadratic regulator problem (LQR) for parabolic partial differential equations (PDEs) has been understood to be an infinite-dimensional Hilbert space equivalent of the finite-dimensional LQR problem known from mathematical systems theory. The matrix equations from the finite-dimensional case become operator equations in the infinite-dimensional Hilbert space setting. A rigorous convergence theory for the approximation of the infinite-dimensional problem by Galerkin schemes in the space variable has been developed over the past decades. Numerical methods based on this approximation have been proven capable of solving the case of linear parabolic PDEs. Embedding these solvers in a model predictive control (MPC) scheme, also nonlinear systems can be handled. Convergence rates for the approximation in the linear case are well understood in terms of the PDE's solution trajectories, as well as the solution operators of the underlying matrix/operator equations. However, in practice engineers are often interested in suboptimality results in terms of the optimal cost, i.e., evaluation of the quadratic cost functional. In this contribution, we are closing this gap in the theory. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, we prove the existence and uniqueness of trajectories joining critical points for differential equations in R3 by constructing the index pair of the isolated invariant set and using Conley index theory.  相似文献   

20.
In this paper, we describe a new method for solving the inverse problem associated with a set of ordinary nonlinear differential equations. It is proved that the method has quadratic convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号