首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dosimetric characteristics of γ-radiation-induced defects in magnesium lactate (ML) rods (3.5 mm×10 mm) formulated by mixing ML with molten mixtures of paraffin wax and EVA copolymer have been investigated using electron paramagnetic resonance (EPR). The EPR spectrum of irradiated ML rods was characterized by a quartet signal with the spectroscopic splitting g-factor of 2.0048±0.0003 at 0.4 mT. The useful dose range of the rod dosimeter was 100 Gy to 80 kGy. The mass attenuation coefficient, μ/ρ, and the mass energy-absorption coefficient, μen/ρ, versus energy in the range of 10 keV to 20 MeV indicate that the prepared ML dosimeter is typically adipose tissue equivalent overall this energy range. The overall combined uncertainties (at 2σ) associated with routine dose monitoring in the dose range of 0.1–10 kGy and 10–80 kGy were found to be 6.14% and 6.36%, respectively.  相似文献   

2.
The use of electron spin resonance (ESR) spectroscopy to accurately distinguish irradiated from unirradiated sage tea was examined. Before irradiation, sage tea samples exhibit one asymmetric singlet ESR signal centered at g=2.0037. Besides this central signal, two weak satellite signals situated about 3 mT left and right to it in radiation-induced spectra. Irradiation with increasing doses caused a significant increase in radiation-induced ESR signal intensity at g=2.0265 (the left satellite signal) and this increase was found to be explained by a polynomial varying function. The stability of that radiation-induced ESR signal at room temperature was studied over a storage period of 9 months. Also, the kinetic of signal at g=2.0265 was studied in detail over a temperature range 313–353 K by annealing samples at different temperatures for various times.  相似文献   

3.
Irradiation is an excellent method for improving the safety and functional properties of egg. However, the internal quality of egg can be deteriorated due to a rapid decrease in Haugh units. In this study, the optimal conditions for maintaining the quality and maximizing the safety and functional properties of egg were determined when combination of irradiation and chitosan coating was treated using response surface methodology (RSM). Independent degradation parameters—irradiation dose (0–2 kGy) and concentration of chitosan coating (0–2%) were assigned (?2,–1, 0, 1, 2), and 10 intervals were set on the basis of central composite design for the degradation experiment. The dependant variables within a confidence level less than 5% were Haugh units, foaming ability, foam stability, and number of Salmonella typhimurium. The predicted maximum values of Haugh units and foaming ability were 82.7 (irradiation dose 0.0006 kGy and concentration of chitosan solution 1.03%) and 62.2 mm (1.99 kGy and 0.86%), respectively. S. typhimurium inoculated on the egg surface was not detected after 1.86 kGy and 0.48%. Based on superimposing four-dimensional RSM with respect to freshness (Haugh units), functional property (foaming capacity and foam stability), and reduction of S. typhimurium, the predicted optimum ranges for irradiation dose and chitosan solution concentration were 0.35–0.65 kGy and 0.25–0.85%, respectively. The predicted optimum values were obtained from 0.45 kGy and 0.525%. This methodology can be used to predict egg quality and safety when different combination treatments were applied.  相似文献   

4.
Heat-induced paramagnetic centers in modern and archaeological lentils (Lens culinaris, Medik.) were studied by X-band (9.3 GHz) electron spin resonance (ESR) technique. The modern red lentil samples were heated in an electrical furnace at increasing temperatures in the range 70–500 °C. The ESR spectral parameters (the intensity, g-value and peak-to-peak line width) of the heat-induced organic radicals were investigated for modern red lentil (Lens culinaris, Medik.) samples. The obtained ESR spectra indicate that the relative number of heat-induced paramagnetic species and peak-to-peak line widths depends on the temperature and heating time of the modern lentil. The g-values also depend on the heating temperature but not heating time. Heated modern red lentils produced a range of organic radicals with g-values from g = 2.0062 to 2.0035. ESR signals of carbonised archaeological lentil samples from two archaeological deposits of the Van province in Turkey were studied and g-values, peak-to-peak line widths, intensities and elemental compositions were compared with those obtained for modern samples in order to assess at which temperature these archaeological lentils were heated in prehistoric sites. The maximum temperatures of the previous heating of carbonised UA5 and Y11 lentil seeds are as follows about 500 °C and above 500 °C, respectively.  相似文献   

5.
Food packaging polymers, polystyrene (PS), polycarbonate (PC), polyamide-6 (PA-6), and polyvinylchloride (PVC), were irradiated with dose in the range 5–200 kGy. The quantities of corresponding monomer residues (styrene monomer, bisphenol-A, ε-caprolactam, vinyl chloride) released from target materials were analyzed using a SIM mode of GC/MSD. Styrene monomer in PS showed a slight increase from 740 to 777 ppm at 5–30 kGy and then decreased as the dose increased from 30 to 200 kGy. Bisphenol-A in PC was dose independent at the low doses, 5, 10 and 30 kGy, but its level increased from 173 to 473 ppm at 30 kGy and thereafter remained unchanged through 200 kGy. ε-Caprolactam in PA-6 was also dose independent, in the range of 5–200 kGy, but its level (122–164 ppm) was found to be higher than those (71 ppm) of non-irradiated sample. As for PVC, the quantity of vinyl chloride tended to increase from 8 to 18 ppm at 5–200 kGy.  相似文献   

6.
Radix W, a clear poly(methyl-methacrylate) (PMMA) dosimeter was developed with improved properties compared to the conventional clear PMMA dosimeter, Radix RN15. PMMA with a glass transition temperature (Tg) higher than 120 °C was selected making it possible to measure doses in a wide range of 1 to 150 kGy. Dose rates of 2.5–10 kGy/h were tested and did not affect significantly the dose response. The influence of irradiation temperature was reduced compared with Radix RN15.  相似文献   

7.
Chitosan films were prepared by dissolving 1% (w/v) chitosan powder in 2% (w/v) aqueous acetic acid solution. Chitosan films were prepared by solution casting. The values of puncture strength (PS), viscoelasticity coefficient and water vapor permeability (WVP) of the films were found to be 565 N/mm, 35%, and 3.30 g mm/m2 day kPa, respectively. Chitosan solution was exposed to gamma irradiation (0.1–5 kGy) and it was revealed that PS values were reduced significantly (p≤0.05) after 1 kGy dose and it was not possible to form films after 5 kGy. Monomer, 2-hydroxyethyl methacrylate (HEMA) solution (0.1–1%, w/v) was incorporated into the chitosan solution and the formulation was exposed to gamma irradiation (0.3 kGy). A 0.1% (w/v) HEMA concentration at 0.3 kGy dose was found optimal-based on PS values for chitosan grafting. Then radiation dose (0.1–5 kGy) was optimized for HEMA grafting. The highest PS values (672 N/mm) were found at 0.7 kGy. The WVP of the grafted films improved significantly (p≤0.05) with the rise of radiation dose.  相似文献   

8.
The 9.50 GHz electron paramagnetic resonance (EPR) spectra of unirradiated and 60Co γ-ray irradiated cardamom (Elettaria cardamomum L. Maton, Zingiberaceae), ginger ((Zingiber officinale Rosc., Zingiberaceae), and saffron (Crocus sativus L., Iridaceae) have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones. After γ-ray irradiation at an absorbed dose of up to 11.3 kGy, the presence of EPR spectra whose amplitude increase monotonously with the absorbed dose has been noticed with all spices. A 100 °C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that compose initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after 83 days storage at room temperature but after 340 days storage at ambient conditions only irradiated ginger displays a weak signal that differs from those of unirradiated sample. All these factors could be taken into account in establishing at which extent the EPR is suitable to evidence any irradiation treatment applied to these spices.  相似文献   

9.
Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan δ) of 167 °C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a Tg (tan δ) of 136 °C. So, the irradiated sample had its Tg increased approximately 20% and the curing process was much less time consuming.  相似文献   

10.
Mechanical, thermal, chemical decomposition and electron spin resonance (ESR) methods were used to study electron beam irradiated polypropylene syringe barrels that were irradiated to a total fractionated dose of 0, 20, 40, 60, and 80 kGy (in steps of 20 kGy). Dose mapping was conducted to determine dose to and through the syringe barrel. Analysis of these data indicated that degradation of the polypropylene syringes increased with an increase in electron beam irradiation.  相似文献   

11.
The present study was conducted to evaluate the effect of irradiation temperature on the shelf stability and quality of Kimchi during storage at 35 °C for 30 days. Kimchi samples were N2-packaged and heated at 60 °C and then gamma irradiated at 20 kGy under various temperatures (room temperature, ice, dry ice, and liquid nitrogen). In the results of microbial, pH, and acidity analysis, combination treatment of heating and irradiation was able to sterilize microbes in Kimchi regardless of irradiation temperature. When Kimchi was irradiated under frozen temperatures, especially dry ice, the softening of texture and the deterioration of sensory quality of Kimchi were reduced. Also, ESR signal intensities were weakened due to the decrease of irradiation dose and temperature.  相似文献   

12.
The effects of gamma irradiation on chitosan samples were determined in terms of physicochemical and functional properties. Shrimp chitosan was extracted from shell using a chemical process involving demineralization, deproteinization, decolorization and deacetylation. Commercial snow chitosan was also used. Samples (in a solid state) were given irradiation dose of 25 kGy at a dose rate of 1.1013 kGy/h in air and 0 kGy samples were used as controls. Results showed that moisture contents were between 8.690% and 13.645%. There were no significant differences (P>0.05) in the degree of deacetylation of the chitosan samples. Significant differences (P<0.05) were observed in the viscosity and viscosity-average molecular weight of the chistosan samples. Viscosity and molecular weight decreased when the samples were given the irradiation dose of 25 kGy. Chitosan samples had low antioxidant activity compared with BHT. Water binding capacity ranged from 582.40% to 656.75% and fat binding capacity was between 431.00% and 560.55%. Irradiation had a major effect on the viscosity and the viscosity-average molecular weight of the chitosan samples.  相似文献   

13.
The radiosensitivities of Escherichia coli and Staphylococcus aureus on poached chicken meal (PCM) and minced chicken substrate (MCS) were determined. Effect of irradiation (0, 1, 2 kGy) on total viable cells (TVC) of PCM components was determined under chilled (3–5 °C) storage (0, 9, 14, 21 days) and challenge testing of the bacterial isolates with irradiation (0, 2, 3 kGy) was also conducted on PCM under chilled storage (0,7, 14, 21, 28 days). Additionally, sensory evaluation of the PCM components was assessed with irradiation (0, 2, 3 kGy) during chilled storage (0, 7, 14, 21 days). D10 of E. coli on PCM and MCS were 0.18 and 0.25 kGy whiles those of S. aureus were 0.27 and 0.29 kGy, respectively. D10 values for PCM<MCS and values for S. aureus>E. coli. 2 kGy controlled TVC and extended the shelf life of meals to ⩾14 days but 3 kGy was required to eliminate E. coli and S. aureus. Sensory qualities of the meal were not affected by an irradiation dose of 3 kGy.  相似文献   

14.
Lotus seeds are nutraceutically valued natural plant produce, which succumbs to microbial contamination, predominantly to toxigenic moulds. Results of the present study revealed seed coat portion to harbor higher proportion of microbial load, particularly fungi than cotyledon portion. Among the mycotoxins analyzed, aflatoxins (B1, B2, G1 and G2) were below detectable limits, while the seeds were devoid of Ochratoxin-A (OTA). Application of different doses of electron beam and gamma irradiation (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) for decontamination purpose revealed significant dose-dependent decrease in the fungal contaminants (P<0.05). However, the contaminant yeasts could survive up to 10 kGy dose, which could be completely eliminated at 15 kGy. From the results obtained, a dose range between 10 and 15 kGy is recommended for complete decontamination, as these doses have also been shown earlier to have minimal effects on nutritional and functional properties of lotus seeds.  相似文献   

15.
A capillary electrophoresis method with UV detection was developed to analyze protein composition of the foodborne pathogen Staphylococcus aureus. Bacterial samples containing 109 CFU/ml, obtained after two cycles of incubations of 24 h, were gamma irradiated at different doses of 1.2, 3.5 and 2.9 kGy to respectively create damage cells, to kill cells and to provoke viable but non cultivable cells (VBNC). It was observed that an irradiation at a sensitive dose of 1.2 kGy caused a significantly increase in the protein with molecular weight (MW) of 17.7 kDa (from 0.61% to 1.2%). This treatment also caused decreases in the expressed proteins with the MWs of 16.3 kDa (from 6.2% to 5.3%) and of 23.4 kDa (from 4.0% to 2.30%). Irradiation at a VBCN dose of 2.9 kGy caused increases in expressed proteins with the MWs of 17.7 kDa (from 0.61% to 3.43%), 18.7 kDa (from 1.04% to 4.30%), 19.5 kDa (from 0.71% to 2.30%), 21.1 kDa (from 1.20% to 3.80%). Moreover, this treatment (2.9 kGy) also caused significantly decreases (P≤0.05) in the expressed proteins with the MW of 30.7 kDa (from 8.6% to 5.15%), 36.3 kDa (from 3.1% to 2.7%) and 40.5 kDa (from 11.3% to 8.5%). Finally, for the irradiation at a lethal dose of 3.5 kGy, it can be found that the expressed proteins with the MW of 17.7 kDa, 18.7 kDa and 19.5 kDa were increased less than that of expressed proteins at the VCNC dose (2.9 kGy) and these might be the very important proteins which are responsible for the survival of the S. aureus. Further, there were also the decreases in expressed proteins with the MW of 30.7 kDa, 36.3 kDa and 75.1 kDa at this dose of treatment (3.5 kGy) which can be expected that these proteins are seriously affected at high dose of γ-irradiation treatment.  相似文献   

16.
Optical transmittance in the range from 200 nm to 1100 nm is measured for fresh and γ-irradiated thermally evaporated chalcogenide films of GeSe3, Sb2Se3, ZnSe, (GeSe3)80(Sb2Se3)20 and (GeSe3)70(Sb2Se3)10(ZnSe)20. The effect of ZnSe incorporation with both GeSe3, Sb2Se3 results in amorphous γ-radiation sensitive (GeSe3)70(Sb2Se3)10(ZnSe)20 composition as obtained from the estimated optical parameters. Optical energy gap, Eg, for (GeSe3)70(Sb2Se3)10(ZnSe)20 film shows a noticeable decrease from 1.81 eV at 0 kGy to 1.52 eV at 690 kGy and conversely the corresponding band tail width, Ee, increases from 0.123 eV at 0 kGy to 0.138 eV at 690 kGy. By contrast, the estimated values of Eg and Ee for (GeSe3)80(Sb2Se3)20 compositions, show no change with different γ-irradiation doses in the same range. The obtained results could be explained in terms of the band edge shift into the energy gap due to either the formation of localized states at the edges or weakening in the composition cohesive energy as reformation of new weaker bonds appear.  相似文献   

17.
In this research, the effect of gamma irradiation on the inactivation of Escherichia coli O157:H7 (ATCC 33150), Staphylococcus aureus (ATCC 2392) and Salmonella typhimurium (NRRL 4463) inoculated into Tekirdag meatballs was investigated. The meatball samples were inoculated with pathogens and irradiated at the absorbed doses of 1, 2.2, 3.2, 4.5 and 5.2 kGy. E. coli O157:H7 count in 1 kGy irradiated meatballs stored in the refrigerator for 7 days was detected to be 4 log cfu/g lower than the count in nonirradiated samples (p<0.05). S. aureus counts were decreased to 4 log cfu/g after being exposed to irradiation at a dose of 1 kGy. Although it was ineffective on elimination of S. typhimurium, irradiation at a dose of 3.2 kGy reduced E. coli O157:H7 and S. aureus counts under detectable values in the meatballs. However, none of the test organisms were detected in the samples after irradiation with 4.5 kGy doses.  相似文献   

18.
Effects of gamma irradiation on nutritional, physiological, physicochemical and sensory properties of the Korean lactic acid fermented vegetable, Kimchi, were investigated. The composition of amino acids and organic acids in Kimchi were not influenced by gamma irradiation less than 10 kGy. Angiotensine converting enzyme inhibitory, xanthin oxidase inhibitory, electron donating and antimicrobial activity of Kimchi extract were stable up to 10 kGy. There were no significant changes in pH and texture at less than 10 kGy. Color values were influenced at 10 kGy of gamma irradiation, and resulted in the increase of L*- and reduction of a*-value. About 90% of panelists identified a sensory difference between non-irradiated and 10 kGy-irradiated sample, and Kimchi irradiated at 10 kGy had lower scores in acceptability than those of the control or irradiated at 2.5 and 5 kGy.  相似文献   

19.
The effect of gamma radiation from 60Co source and 2 MeV e-beam was studied on two thermolabile cephalosporin antibiotics viz cefdinir and cefixime in solid state. The parameters studied to assess radiolytic degradation were loss of chemical and microbiological potency, change in optical rotation, electronic and vibrational absorption characteristics, thermal behavior and color modification. ESR spectroscopic study, HPLC related impurity profile, thermogram and Raman spectrum are applied in deducing the nature of radiolytic impurities and their formation hypotheses. Cefixime is radiation sensitive, whereas cefdinir has acceptable radiation resistance at 25 kGy dose. The nature of radiolytic related impurities and their concentrations indicates that the lactam ring is not highly susceptible to direct radiation attack, which otherwise is considered very sensitive to stress (thermal, chemical and photochemical).  相似文献   

20.
Si/C composites of carbon hollow structures loaded with Si nanoparticles (NPs) (Si/C-HSs) were prepared by one-step pyrolysis of a mixture of Si NPs and expandable microspheres (EMs). For the Si/C-HSs, hollow carbon shells with rough surfaces were formed by directly carbonizing the polymer shells of EMs, and the Si NPs fell into the void space or were loaded on the rough surfaces of the carbon shells. The EM-based carbon shells accommodated the volume expansion of the Si NPs and improved the electrical conductivity of the composites. As a result, the Si/C-HSs exhibited a high capacity (initial reversible capacity: 854.4 mAh g 1 at 300 mA g 1), stable cycling performance (capacity retention: 80% after 50 cycles), and excellent rate capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号