首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在基于身份的密钥提取过程中,使密钥生成器在私钥中嵌入随机数,从而使得密钥提取具有较好的灵活性,使得用户对一个身份可具备多个私钥,这无疑会增加密钥使用的安全性;基于这种新的密钥提取思路,给出一个基于身份的签名体制,新的密钥提取方式使得它具有更好的安全性和灵活性;新的基于身份的签名体制中具有最少对运算,因此,与类似的方案相比,其具备较好的计算效率;新签名体制的安全性依赖于k-合谋攻击问题(k-CAAP)的困难性,其在适应性选择消息和ID攻击下具备强不可伪造性,并且其安全性证明具有紧规约性.  相似文献   

2.
Certificateless signature and proxy signature schemes from bilinear pairings   总被引:18,自引:0,他引:18  
Due to avoiding the inherent escrow of identity-based cryptography and yet not requiring certificates to guarantee the authenticity of public keys, certificateless public key cryptography has received a significant attention. Due to various applications of bilinear pairings in cryptography, numerous pairing-based encryption schemes, signature schemes, and other cryptographic primitives have been proposed. In this paper, a new certificateless signature scheme based on bilinear pairings is presented. The signing algorithm of the proposed scheme is very simple and does not require any pairing computation. Combining our signature scheme with certificateless public key cryptography yields a complete solution of certificateless public key system. As an application of the proposed signature scheme, a certificateless proxy signature scheme is also presented. We analyze both schemes from security point of view.__________Published in Lietuvos Matematikos Rinkinys, Vol. 45, No. 1, pp. 95–103, January–March, 2005.  相似文献   

3.
This paper deals with generic transformations from ID-based key encapsulation mechanisms (IBKEM) to hybrid public-key encryption (PKE). The best generic transformation known until now is by Boneh and Katz and requires roughly 704-bit overhead in the ciphertext. We present new generic transformations that are applicable to partitioned IBKEMs. A partitioned IBKEM is an IBKEM that provides some extra structure. Such IBKEMs are quite natural and in fact nearly all known IBKEMs have this additional property. Our first transformation yields chosen-ciphertext secure PKE schemes from selective-ID secure partitioned IBKEMs with a 256-bit overhead in ciphertext size plus one extra exponentiation in encryption/decryption. As the central tool a Chameleon Hash function is used to map the identities. We also propose other methods to remove the use of Chameleon Hash, which may be of independent technical interest. Applying our transformations to existing IBKEMs we propose a number of novel PKE schemes with different trade-offs. In some concrete instantiations the Chameleon Hash can be made “implicit” which results in improved efficiency by eliminating the additional exponentiation. Since our transformations preserve the public verifiability property of the IBE schemes it is possible to extend our results to build threshold hybrid PKE schemes. We show an analogue generic transformation in the threshold setting and present a concrete scheme which results in the most efficient threshold PKE scheme in the standard model.  相似文献   

4.
Encryption schemes based on the rank metric lead to small public key sizes of order of few thousands bytes which represents a very attractive feature compared to Hamming metric-based encryption schemes where public key sizes are of order of hundreds of thousands bytes even with additional structures like the cyclicity. The main tool for building public key encryption schemes in rank metric is the McEliece encryption setting used with the family of Gabidulin codes. Since the original scheme proposed in 1991 by Gabidulin, Paramonov and Tretjakov, many systems have been proposed based on different masking techniques for Gabidulin codes. Nevertheless, over the years most of these systems were attacked essentially by the use of an attack proposed by Overbeck. In 2005 Faure and Loidreau designed a rank-metric encryption scheme which was not in the McEliece setting. The scheme is very efficient, with small public keys of size a few kiloBytes and with security closely related to the linearized polynomial reconstruction problem which corresponds to the decoding problem of Gabidulin codes. The structure of the scheme differs considerably from the classical McEliece setting and until our work, the scheme had never been attacked. We show in this article that for a range of parameters, this scheme is also vulnerable to a polynomial-time attack that recovers the private key by applying Overbeck’s attack on an appropriate public code. As an example we break in a few seconds parameters with 80-bit security claim. Our work also shows that some parameters are not affected by our attack but at the cost of a lost of efficiency for the underlying schemes.  相似文献   

5.
A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature can be revealed by a designated entity. We introduce a forward secure schemes into group signature schemes. When the group public key remains fixed, a group signing key evolves over time. Because the signing key of a group member is evolving at time, the possibility of the signing key being exposed is decreased. We propose a forward secure group signature scheme based on Ateniese and Camenisch et al.’s group signature scheme. The security is analyzed and the comparisons between our scheme with other group signature schemes are made.  相似文献   

6.
The security of two public key encryption schemes relying on the hardness of different computational problems in non-abelian groups is investigated. First, an attack on a conceptual public key scheme based on Grigorchuk groups is presented. We show that from the public data one can easily derive an “equivalent” secret key that allows the decryption of arbitrary messages encrypted under the public key. Hereafter, a security problem in another conceptual public key scheme based on non-abelian groups is pointed out. We show that in the present form the BMW scheme is vulnerable to an attack, which can recover large parts of the private subgroup chain from the public key.  相似文献   

7.
The new signature scheme presented by the authors in [13] is the first signature scheme based on the discrete logarithm problem that gives message recovery. The purpose of this paper is to show that the message recovery feature is independent of the choice of the signature equation and that all ElGamal-type schemes have variants giving message recovery. For each of the six basic ElGamal-type signature equations five variants are presented with different properties regarding message recovery, length of commitment and strong equivalence. Moreover, the six basic signature schemes have different properties regarding security and implementation. It turns out that the scheme proposed in [13] is the only inversionless scheme whereas the message recovery variant of the DSA requires computing of inverses in both generation and verification of signatures. In general, message recovery variants can be given for ElGamal-type signature schemes over any group with large cyclic subgroup as the multiplicative group of GF(2n) or elliptic curve over a finite field.The present paper also shows how to integrate the DLP-based message recovery schemes with secret session key establishment and ElGamal encryption. In particular, it is shown that with DLP-based schemes the same functionality as with RSA can be obtained. However, the schemes are not as elegant as RSA in the sense that the signature (verification) function cannot at the same time be used as the decipherment (encipherment) function.  相似文献   

8.
Predicate encryption is a generalized notion for public key encryption that enables one to encrypt attributes as well as a message. In this paper, we present a new inner-product encryption (IPE) scheme, as a specialized predicate encryption scheme, whose security relies on the well-known Decision Bilinear Diffie-Hellman (BDH) and Decision Linear assumptions. Our IPE scheme uses prime order groups equipped with a bilinear map and works in both symmetric and asymmetric bilinear maps. Our result is the first construction of IPE under the standard assumptions. Prior to our work, all IPE schemes known to date require non-standard assumptions to prove security, and moreover some of them use composite-order groups. To achieve our goal, we introduce a novel technique for attribute-hiding, which may be of independent interest.  相似文献   

9.
For public key encryption schemes, adaptive chosen ciphertext security is a widely accepted security notion since it captures a wide range of attacks. SAEP and SAEP+ are asymmetric encryption schemes which were proven to achieve semantic security against adaptive chosen ciphertext attacks. However, the bandwidth for message is essentially worse, that is the ciphertext expansion (the length difference between the ciphertext and the plaintext) is too large. In most of the mobile networks and bandwidth constrained communication systems, it is necessary to securely send as many messages as possible. In this article, we propose two chosen-ciphertext secure asymmetric encryption schemes. The first scheme is a generic asymmetric encryption padding scheme based on trapdoor permutations. The second one is its application to the Rabin-Williams function which has a very fast encryption algorithm. These asymmetric encryption schemes both achieve the optimal bandwidth w.r.t. the ciphertext expansion, namely with the smallest ciphertext expansion. Further, tight security reductions are shown to prove the security of these encryption schemes.  相似文献   

10.
We introduce a new multivariate encryption scheme inspired by random linear codes. The construction is similar to that of UOV, one of the oldest and most trusted multivariate signature schemes, but with a parameterization nothing like that of UOV. The structure of the scheme admits many generic modifications providing an array of security and performance properties. The scheme also supports an embedding modifier which allows any efficiently invertible multivariate system to be incorporated into the scheme. The product of this methodology is the fastest secure multivariate encryption scheme targeting CCA security at the 128-bit level.  相似文献   

11.
An encryption scheme is non-malleable if giving an encryption of a message to an adversary does not increase its chances of producing an encryption of a related message (under a given public key). Fischlin introduced a stronger notion, known as complete non-malleability, which requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti later proposed a comparison-based definition of this security notion, which is more in line with the well-studied definitions proposed by Bellare et al. The authors also provide additional feasibility results by proposing two constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Therefore, the only previously known completely non-malleable (and non-interactive) scheme in the standard model, is quite inefficient as it relies on generic NIZK approach. They left the existence of efficient schemes in the common reference string model as an open problem. Recently, two efficient public-key encryption schemes have been proposed by Libert and Yung, and Barbosa and Farshim, both of them are based on pairing identity-based encryption. At ACISP 2011, Sepahi et al. proposed a method to achieve completely non-malleable encryption in the public-key setting using lattices but there is no security proof for the proposed scheme. In this paper we review the mentioned scheme and provide its security proof in the standard model. Our study shows that Sepahi’s scheme will remain secure even for post-quantum world since there are currently no known quantum algorithms for solving lattice problems that perform significantly better than the best known classical (i.e., non-quantum) algorithms.  相似文献   

12.
Fine-grained forward-secure signature schemes without random oracles   总被引:1,自引:0,他引:1  
We propose the concept of fine-grained forward-secure signature schemes. Such signature schemes not only provide non-repudiation w.r.t. past time periods the way ordinary forward-secure signature schemes do but, in addition, allow the signer to specify which signatures of the current time period remain valid when revoking the public key. This is an important advantage if the signer produces many signatures per time period as otherwise the signer would have to re-issue those signatures (and possibly re-negotiate the respective messages) with a new key.Apart from a formal model for fine-grained forward-secure signature schemes, we present practical schemes and prove them secure under the strong RSA assumption only, i.e., we do not resort to the random oracle model to prove security. As a side-result, we provide an ordinary forward-secure scheme whose key-update time is significantly smaller than that of known schemes which are secure without assuming random oracles.  相似文献   

13.
Revocable hierarchical identity-based encryption (RHIBE) is an extension of HIBE that supports the revocation of user’s private keys to manage the dynamic credentials of users in a system. Many different RHIBE schemes were proposed previously, but they are not efficient in terms of the private key size and the update key size since the depth of a hierarchical identity is included as a multiplicative factor. In this paper, we propose efficient RHIBE schemes with shorter private keys and update keys and small public parameters by removing this multiplicative factor. To achieve our goals, we first present a new HIBE scheme with the different generation of private keys such that a private key can be simply derived from a short intermediate private key. Next, we show that two efficient RHIBE schemes can be built by combining our HIBE scheme, an IBE scheme, and a tree based broadcast encryption scheme in a modular way.  相似文献   

14.
A traitor tracing scheme allows a content distributor to detect at least one of the traitors whose secret key is used to create a pirate decoder. In building efficient traitor tracing schemes, reducing ciphertext size is a significant factor since the traitor tracing scheme must handle a larger number of users. In this paper, we present a fully collusion-resistant traitor tracing scheme where the ciphertext size is 2.8 times shorter and encryption time is 2.6 times faster, compared to the best cases of fully collusion-resistant schemes previously suggested. We can achieve these efficiency results without sacrificing other costs. Also, our scheme supports public tracing and black-box tracing. To achieve our goal, we use asymmetric bilinear maps in prime order groups, and we introduce a new cancellation technique that has the same effect as that in composite order groups.  相似文献   

15.
This paper investigates the relationships between identity-based non-interactive key distribution (ID-NIKD) and identity-based encryption (IBE). It provides a new security model for ID-NIKD, and a construction that converts a secure ID-NIKD scheme satisfying certain conditions into a secure IBE scheme. This conversion is used to explain the relationship between the ID-NIKD scheme of Sakai, Ohgishi and Kasahara and the IBE scheme of Boneh and Franklin. The paper then explores the construction of ID-NIKD and IBE schemes from general trapdoor discrete log groups. Two different concrete instantiations for such groups provide new, provably secure ID-NIKD and IBE schemes. These schemes are suited to applications in which the Trusted Authority is computationally well-resourced, but clients performing encryption/decryption are highly constrained.   相似文献   

16.
Certificateless cryptography involves a Key Generation Center (KGC) which issues a partial key to a user and the user also independently generates an additional public/secret key pair in such a way that the KGC who knows only the partial key but not the additional secret key is not able to do any cryptographic operation on behalf of the user; and a third party who replaces the public/secret key pair but does not know the partial key cannot do any cryptographic operation as the user either. We call this attack launched by the third party as the key replacement attack. In ACISP 2004, Yum and Lee proposed a generic construction of digital signature schemes under the framework of certificateless cryptography. In this paper, we show that their generic construction is insecure against key replacement attack. In particular, we give some concrete examples to show that the security requirements of some building blocks they specified are insufficient to support some of their security claims. We then propose a modification of their scheme and show its security in a new and simplified security model. We show that our simplified definition and adversarial model not only capture all the distinct features of certificateless signature but are also more versatile when compared with all the comparable ones. We believe that the model itself is of independent interest.A conventional certificateless signature scheme only achieves Girault’s Level 2 security. For achieving Level 3 security, that a conventional signature scheme in Public Key Infrastructure does, we propose an extension to our definition of certificateless signature scheme and introduce an additional security model for this extension. We show that our generic construction satisfies Level 3 security after some appropriate and simple modification. A preliminary version of the extended abstract of partial results appeared in ACISP 2006 [9].  相似文献   

17.
In ACM conference on electronic commerce (EC’03), Han et al. [Identity-based confirmer signatures from pairings over elliptic curves, in: Proceedings of ACM Conference on Electronic Commerce Citation 2003, San Diego, CA, USA, June 09–12, 2003, pp. 262–263] proposed an ID-based confirmer signature scheme using pairings (the scheme is in fact an ID-based undeniable signature scheme). In this paper, we show that this signature scheme is not secure and the signer can deny any signature, even if it is a valid signature, and any one can forge a valid confirmer signature of a signer with identity ID on an arbitrary message and confirm this signature to the verifier.  相似文献   

18.
Generalized signcryption can adaptively work as an encryption scheme, a signature scheme or a signcryption scheme with only one algorithm. It is very suitable for storage-constrained environments. In this paper, we introduce a formal security model for certificateless generalized signcryption schemes secure against the malicious-but-passive key generation center attacks and propose a novel scheme. Our scheme is proved to be IND-CCA2 secure under the GBDH assumption and CDH assumption and existentially unforgeable under the GDH’ assumption and CDH assumption in random oracle model. Furthermore, performance analysis shows the proposed scheme is efficient and practical.  相似文献   

19.
Recently, Chang et al. give a digital signature scheme, where neither one-way hash function nor message redundancy schemes are used, but Zhang et al. has shown that the scheme was forgeable, namely, any one can forge a new signature by the signer’s signature, and give two forgery attacks. To the above attacks, we give an improved signature scheme based on Chang signature scheme and analyze the security of the improved scheme.  相似文献   

20.
In recent years, the security of encryption and signature schemes in the presence of key-dependent plaintexts received attention, and progress in understanding such scenarios has been made. In this article we motivate and discuss a setting where an adversary can access tags of a message authentication code (MAC) on key-dependent message inputs, and we propose a way to formalize the security of MACs in the presence of key-dependent messages (KD?EUF). Like signature schemes, MACs have a verification algorithm, and hence the tagging algorithm must be stateful. We present a scheme MAC-ver which offers KD?EUF security and also yields a forward-secure scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号