首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let X be a real Banach space, ω : [0, +∞) → ? be an increasing continuous function such that ω(0) = 0 and ω(t + s) ≤ ω(t) + ω(s) for all t, s ∈ [0, +∞). According to the infinite dimensional analog of the Osgood theorem if ∫10 (ω(t))?1 dt = ∞, then for any (t0, x0) ∈ ?×X and any continuous map f : ?×XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all t ∈ ?, x, yX, the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has a unique solution in a neighborhood of t0. We prove that if X has a complemented subspace with an unconditional Schauder basis and ∫10 (ω(t))?1 dt < ∞ then there exists a continuous map f : ? × XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all (t, x, y) ∈ ? × X × X and the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has no solutions in any interval of the real line.  相似文献   

2.
A cleavage of a finite graph G is a morphism f : HG of graphs such that if P is the m × n characteristic matrix defined as P ik = 1 if if ?1(k), otherwise = 0, then A(H)PPA(G), where A(G) and A(H) are the adjacency matrices of G and H, respectively. This concept generalizes induced subgraphs, quotients of graphs, Galois covers, path-tree graphs and others. We show that for spectral radii we have the inequality ρ(H) ≤ ρ(G). Equality holds only in case f : HG is an equivariant quotient and H has isoperimetric constant i(H) = 0.  相似文献   

3.
Given two graphs G and H, let f(G,H) denote the minimum integer n such that in every coloring of the edges of Kn, there is either a copy of G with all edges having the same color or a copy of H with all edges having different colors. We show that f(G,H) is finite iff G is a star or H is acyclic. If S and T are trees with s and t edges, respectively, we show that 1+s(t?2)/2≤f(S,T)≤(s?1)(t2+3t). Using constructions from design theory, we establish the exact values, lying near (s?1)(t?1), for f(S,T) when S and T are certain paths or star‐like trees. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 1–16, 2003  相似文献   

4.
Under what conditions is it true that if there is a graph homomorphism GHGT, then there is a graph homomorphism HT? Let G be a connected graph of odd girth 2k + 1. We say that G is (2k + 1)‐angulated if every two vertices of G are joined by a path each of whose edges lies on some (2k + 1)‐cycle. We call G strongly (2k + 1)‐angulated if every two vertices are connected by a sequence of (2k + 1)‐cycles with consecutive cycles sharing at least one edge. We prove that if G is strongly (2k + 1)‐angulated, H is any graph, S, T are graphs with odd girth at least 2k + 1, and ?: GHST is a graph homomorphism, then either ? maps G□{h} to S□{th} for all hV(H) where thV(T) depends on h; or ? maps G□{h} to {sh}□ T for all hV(H) where shV(S) depends on h. This theorem allows us to prove several sufficient conditions for a cancelation law of a graph homomorphism between two box products with a common factor. We conclude the article with some open questions. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:221‐238, 2008  相似文献   

5.
We write HG if every 2‐coloring of the edges of graph H contains a monochromatic copy of graph G. A graph H is Gminimal if HG, but for every proper subgraph H′ of H, H′ ? G. We define s(G) to be the minimum s such that there exists a G‐minimal graph with a vertex of degree s. We prove that s(Kk) = (k ? 1)2 and s(Ka,b) = 2 min(a,b) ? 1. We also pose several related open problems. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 167–177, 2007  相似文献   

6.
Consider an abstract evolution problem in a Hilbert space H (1) where A(t) is a linear, closed, densely defined operator in H with domain independent of t ≥ 0 and G(t,u) is a nonlinear operator such that ‖G(t,u)‖a(t) ‖up, p = const > 1, ‖f(t)‖ ≤ b(t). We allow the spectrum of A(t) to be in the right half‐plane Re(λ) < λ0(t), λ0(t) > 0, but assume that limt → ∞λ0(t) = 0. Under suitable assumptions on a(t) and b(t), the boundedness of ‖u(t)‖ as t → ∞ is proved. If f(t) = 0, the Lyapunov stability of the zero solution to problem (1) with u0 = 0 is established. For f ≠ 0, sufficient conditions for the Lyapunov stability are given. The novel point in our study of the stability of the solutions to abstract evolution equations is the possibility for the linear operator A(t) to have spectrum in the half‐plane Re(λ) < λ0(t) with λ0(t) > 0 and limt → ∞λ0(t) = 0 at a suitable rate. The new technique, proposed in the paper, is based on an application of a novel nonlinear differential inequality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Let {T(t)}t≥0 be a C0–semigroup on a Banach space X with generator A, and let HT be the space of all xX such that the local resolvent λ ↦ R(λ, A)x has a bounded holomorphic extension to the right half–plane. For the class of integrable functions ϕ on [0, ∞) whose Fourier transforms are integrable, we construct a functional calculus ϕ ↦ Tϕ, as operators on HT. Weshow that each orbit T(·)Tϕx is bounded and uniformly continuous, and T(t)Tϕx → 0 weakly as t → ∞, and we give a new proof that ∥T(t)R(μ, A)x∥ = O(t). We also show that ∥T(t)Tϕx∥ → 0 when T is sun –reflexive, and that ∥T(t)R(μ, A)x∥ = O(ln t) when T is a positive semigroup on a normal ordered space X and x is a positive vector in HT.  相似文献   

8.
《Quaestiones Mathematicae》2013,36(6):749-757
Abstract

A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination number γt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only if γt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.  相似文献   

9.
The famous logistic differential equation is studied in the complex plane. The method used is based on a functional analytic technique which provides a unique solution of the ordinary differential equation (ODE) under consideration in H 2(𝔻) or H 1(𝔻) and gives rise to an equivalent difference equation for which a unique solution is established in ?2 or ?1. For the derivation of the solution of the logistic differential equation this discrete equivalent equation is used. The obtained solution is analytic in {z ∈ ?: |z| <T}, T > 0. Numerical experiments were also performed using the classical 4th order Runge–Kutta method. The obtained results were compared for real solutions as well as for solutions of the form y(t) = u(t) + iv(t), t ∈ ?. For t ∈ ? the solution derived by the present method, seems to have singularities, that is, points where it ceases to be analytic, in certain sectors of the complex plane. These sectors, depending on the values of the involved parameters, can move at different directions, join forming common sectors, or pass through each other and continue moving independently. Moreover, the real and imaginary part of the solution seem to exhibit oscillatory behavior near these sectors.  相似文献   

10.
Let f: ?2 → ? be a function with upper semicontinuous and quasi-continuous vertical sections f x (t) = f(x, t), t, x ∈ ?. It is proved that if the horizontal sections f y (t) = f(t, y), y, t ∈ ?, are of Baire class α (resp. Lebesgue measurable) [resp. with the Baire property] then f is of Baire class α + 2 (resp. Lebesgue measurable and sup-measurable) [resp. has Baire property].  相似文献   

11.
The Ramsey number Rk(G) of a graph G is the minimum number N, such that any edge coloring of KN with k colors contains a monochromatic copy of G. The constrained Ramsey number f(G, T) of the graphs G and T is the minimum number N, such that any edge coloring of KN with any number of colors contains a monochromatic copy of G or a rainbow copy of T. We show that these two quantities are closely related when T is a matching. Namely, for almost all graphs G, f(G, tK2) = Rt ? 1(G) for t≥2. © 2010 Wiley Periodicals, Inc. J Graph Theory 67:91‐95, 2011  相似文献   

12.
We study special regularity and decay properties of solutions to the IVP associated to the k-generalized KdV equations. In particular, for datum u 0 ∈ H 3/4+ (?) whose restriction belongs to H l ((b, ∞)) for some l ∈ ?+ and b ∈ ? we prove that the restriction of the corresponding solution u(·, t) belongs to H l ((β, ∞)) for any β ∈ ? and any t ∈ (0, T). Thus, this type of regularity propagates with infinite speed to its left as time evolves.  相似文献   

13.
A linear and bounded operator T between Banach spaces X and Y has Fourier type 2 with respect to a locally compact abelian group G if there exists a constant c > 0 such that∥T2cf2 holds for all X‐valued functions fLX2(G) where is the Fourier transform of f. We show that any Fourier type 2 operator with respect to the classical groups has Fourier type 2 with respect to any locally compact abelian group. This generalizes previous special results for the Cantor group and for closed subgroups of ?n. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the almost everythere convergence to the initial dataf(x)=u(x, 0) of the solutionu(x, t) of the two-dimensional linear Schrödinger equation Δu=i? t u. The main result is thatu(x, t) →f(x) almost everywhere fort → 0 iffH p (R2), wherep may be chosen <1/2. To get this result (improving on Vega’s work, see [6]), we devise a strategy to capture certain cancellations, which we believe has other applications in related problems.  相似文献   

15.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

16.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

17.
We show that if G is a definably compact, definably connected definable group defined in an arbitrary o‐minimal structure, then G is divisible. Furthermore, if G is defined in an o‐minimal expansion of a field, k ∈ ? and pk : GG is the definable map given by pk (x ) = xk for all xG , then we have |(pk )–1(x )| ≥ kr for all xG , where r > 0 is the maximal dimension of abelian definable subgroups of G . (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
An operator TL(E, F) factors over G if T = RS for some SL(E, G) and RL(G, F); the set of such operators is denoted by LG(E, F). A triple (E, G, F) satisfies bounded factorization property (shortly, (E, G, F) ∈ ???) if LG(E, F) ? LB(E, F), where LB(E, F) is the set of all bounded linear operators from E to F. The relationship (E, G, F) ∈ ??? is characterized in the spirit of Vogt's characterisation of the relationship L(E, F) = LB(E, F) [23]. For triples of K?othe spaces the property ??? is characterized in terms of their K?othe matrices. As an application we prove that in certain cases the relations L(E, G1) = LB(E, G1) and L(G2, F) = LB(G2, F) imply (E, G, F) ∈ ??? where G is a tensor product of G1 and G2.  相似文献   

19.
Summary. Let (G, +) and (H, +) be abelian groups such that the equation 2u = v 2u = v is solvable in both G and H. It is shown that if f1, f2, f3, f4, : G ×G ? H f_1, f_2, f_3, f_4, : G \times G \longrightarrow H satisfy the functional equation f1(x + t, y + s) + f2(x - t, y - s) = f3(x + s, y - t) + f4(x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , then f1, f2, f3, and f4 are given by f1 = w + h, f2 = w - h, f3 = w + k, f4 = w - k where w : G ×G ? H w : G \times G \longrightarrow H is an arbitrary solution of f (x + t, y + s) + f (x - t, y - s) = f (x + s, y - t) + f (x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , and h, k : G ×G ? H h, k : G \times G \longrightarrow H are arbitrary solutions of Dy,t3g(x,y) = 0 \Delta_{y,t}^{3}g(x,y) = 0 and Dx,t3g(x,y) = 0 \Delta_{x,t}^{3}g(x,y) = 0 for all x, y, s, t ? G x, y, s, t \in G .  相似文献   

20.
A definition is given of a symmetric local semigroup of (unbounded) operators P(t) (0 ? t ? T for some T > 0) on a Hilbert space H, such that P(t) is eventually densely defined as t → 0. It is shown that there exists a unique (unbounded below) self-adjoint operator H on H such that P(t) is a restriction of e?tH. As an application it is proven that H0 + V is essentially self-adjoint, where e?tH0 is an Lp-contractive semigroup and V is multiplication by a real measurable function such that VL2 + ε and e?δVL1 for some ε, δ > 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号