首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Methylprop-2-ene-1-sulfonyl fluorides can be easily prepared via the ene reaction of methallylsilanes and SO2. In the presence of a base, aldehydes and 2-methylprop-2-ene-1-sulfonyl fluorides give 1,3-(E) and (Z)-dienes. Their (Z)→(E) isomerization by classical means fails or leads to their polymerization. It is shown that SO2 can isomerize 1-aryl-3-methyl-1,3-dienes at low temperature, without formation of sulfolenes (cheletropic addition/elimination). Preliminary mechanistic studies suggest that SO2 adds to 1,3-dienes forming 1,4-diradical intermediates that are responsible for the (Z)→(E) isomerizations.  相似文献   

2.
A straightforward method to prepare symmetrical (1Z, 3Z)- and (1E, 3E)-2,3-difluoro-1,4-disubstituted-buta-1,3-dienes is described. High E/Z ratio 1-bromo-1-fluoroalkenes, prepared by isomerization from the E/Z ≈ 1:1 isomeric mixtures, reacted with Bu3SnSnBu3 and Pd(PPh3)4 to afford (1Z, 3Z)-2,3-difluoro-1,4-disubstituted-buta-1,3-dienes in good yield. (Z)-1-Bromo-1-fluoroalkenes, which were prepared by kinetic reduction from 1-bromo-1-fluoroalkenes (E/Z ≈ 1:1), can undergo similar reaction with Bu3SnSnBu3 and Pd(PPh3)4/CuI to prepare (1E, 3E)-2,3-difluoro-1,4-disubstituted-buta-1,3-dienes.  相似文献   

3.
T. Gajda  A. Zwierzak 《Tetrahedron》1985,41(21):4953-4960
The addition of DCPA to several conjugated 1,3-dienes has been studied. The reaction was found to proceed in dichloromethane and was spontaneously or photolytically initiated depending on the structure of the dienes. N-chloro adducts, formed upon addition, could be reduced “in situ” with sodium sulphite solution to give the corresponding diethyl N-(chloroalkenyl)posphoroamidates. Addition of DCPA to terminal double bond 1,3-dienes (butadiene, isoprene and 2,3-dimethyl-1,3-butadiene) leads regiospecifically to (E)-1,4-adducts. Similarly, 1,4-addition is also observed for 1,3-cyclohexadiene. Reaction of DCPA with nonterminal double bond 1,3-dienes (trans-piperylene, 4-methyl-1,3-pentadiene, 2,5-dimethyl-2,4-hexadiene and 1,4-diphenyl-1,3-butadiene) usually affords a mixture of adducts. Spectral data and chemical transformations pertinent to the proof of structure of DCPA addition products are presented. A possible mechanism for the addition is discussed.  相似文献   

4.
Human S100A12 is a host-defense protein expressed and released by neutrophils that contributes to innate immunity. Apo S100A12 is a 21 kDa antiparallel homodimer that harbors two Ca(ii)-binding EF-hand domains per subunit and exhibits two His3Asp motifs for chelating transition metal ions at the homodimer interface. In this work, we present results from metal-binding studies and microbiology assays designed to ascertain whether Ca(ii) ions modulate the Zn(ii)-binding properties of S100A12 and further evaluate the antimicrobial properties of this protein. Our metal-depletion studies reveal that Ca(ii) ions enhance the ability of S100A12 to sequester Zn(ii) from microbial growth media. We report that human S100A12 has antifungal activity against Candida albicans, C. krusei, C. glabrata and C. tropicalis, all of which cause human disease. This antifungal activity is Ca(ii)-dependent and requires the His3Asp metal-binding sites. We expand upon prior studies of the antibacterial activity of S100A12 and report Ca(ii)-dependent and strain-selective behavior. S100A12 exhibits in vitro growth inhibitory activity against Listeria monocytogenes. In contrast, S100A12 has negligible effect on the growth of Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Loss of functional ZnuABC, a high-affinity Zn(ii) import system, increases the susceptibility of E. coli and P. aeruginosa to S100A12, indicating that S100A12 deprives these mutant strains of Zn(ii). To evaluate the Zn(ii)-binding sites of S100A12 in solution, we present studies using Co(ii) as a spectroscopic probe and chromophoric small-molecule chelators in Zn(ii) competition titrations. We confirm that S100A12 binds Zn(ii) with a 2 : 1 stoichiometry, and our data indicate sub-nanomolar affinity binding. Taken together, these data support a model whereby S100A12 uses Ca(ii) ions to tune its Zn(ii)-chelating properties and antimicrobial activity.  相似文献   

5.
The cross-coupling reaction of (Z) 1-bromo-1-fluoroalkenes catalyzed by PdCl2(PPh3)2-2PPh3 (3%) and CsF in Tetrahydrofuran (THF) in presence of bis(pinacolato)diboron led to (1E,3E) 2,3-difluoro-1,4-disubstituted-buta-1,3-dienes in high yields.  相似文献   

6.
A family of five new bis-bidentate azole–triazole Rat ligands (1,3-bis(5-(azole)-4-isobutyl-4H-1,2,4-triazol-3-yl)benzene), varying in choice of azole (2-imidazole, 4-imidazole, 1-methyl-4-imidazole, 4-oxazole and 4-thiazole), and the corresponding family of spin-crossover (SCO) and redox active triply bridged dinuclear helicates, [FeII2L3]4+, has been prepared and characterised. X-ray crystal structures show all five Fe(ii) helicates are low spin at 100 K. Importantly, DOSY NMR confirms the intactness of these SCO-active dinuclear helicates in D3-MeCN solution, regardless of HS fraction: γHS(298 K) = 0–0.81. Variable temperature 1H NMR Evans and UV-vis studies reveal that the helicates are SCO-active in MeCN solution. Indeed, the choice of azole in the Rat ligand used in [Fe2L3]4+ tunes: (a) solution SCO T1/2 from 247 to 471 K, and (b) reversible redox potential, Em(FeII/III), from 0.25 to 0.67 V for four helicates, whilst one has an irreversible redox process, Epa = 0.78 V, vs. 0.01 M AgNO3/Ag. For the four reversible redox systems, a strong correlation (R2 = 0.99) is observed between T1/2 and Epa. Finally, the analogous Ni(ii) helicates have been prepared to obtain Δo, establishing: (a) the ligand field strength order of the ligands: 4-imidazole (11 420) ∼ 1-methyl-4-imidazole (11 430) < 2-imidazole (11 505) ∼ 4-oxazole (11 516) < 4-thiazole (11 804 cm−1), (b) that Δo ([NiII2L3]4+) strongly correlates (R2 = 0.87) with T1/2 ([FeII2L3]4+), and (c) interestingly that Δo strongly correlates (R2 = 0.98) with Epa for the four helicates with reversible redox, so the stronger the ligand field strength, the harder it is to oxidise the Fe(ii) to Fe(iii).

Choice of non-coordinated diazole heteroatom in five robust triply bridged dinuclear helicates tunes Δo, spin crossover and redox potential. Regardless of fraction high spin (0–0.81), DOSY NMR confirms the helicates are intact in solution.  相似文献   

7.
We report STM investigations on a linear oligophenyleneethylene (OPE)-based self-assembling Pd(ii) complex 1 that forms highly-ordered concentration dependent patterns on HOPG. At high concentration, 2D lamellar structures are observed whereas the dilution of the system below a critical concentration leads to the formation of visually attractive rhombitrihexagonal Archimedean tiling arrangements featuring three different kinds of polygons: triangles, hexagons and rhombi. The key participation of the Cl ligands attached to the Pd(ii) centre in multiple C–H···Cl interactions was demonstrated by comparing the patterns of 1 with those of an analogous non-metallic system 2.  相似文献   

8.
Ferrocene containing N-heterocyclic carbene (NHC) ligated gold(i) complexes of the type [Au(NHC)2]+ were prepared and found to be capable of regulating the formation of reactive oxygen species (ROS) via multiple mechanisms. Single crystal X-ray analysis of bis(1-(ferrocenylmethyl)-3-mesitylimidazol-2-ylidene)-gold(i) chloride (5) and bis(1,3-di(ferrocenylmethyl)imidazol-2-ylidene)-gold(i) chloride (6) revealed a quasi-linear geometry around the gold(i) centers (i.e., the C–Au–C bond angle were measured to be ∼177° and all the Au–Ccarbene bonds distances were in the range of 2.00 (7)–2.03 (1) Å). A series of cell studies indicated that cell proliferation inhibition and ROS generation were directly proportional to the amount of ferrocene contained within the [Au(NHC)2]+ complexes (IC50 of 6 < 5 < bis(1-benzyl-3-mesitylimidazol-2-ylidene)-gold(i) chloride (4)). Complexes 4–6 were also confirmed to inhibit thioredoxin reductase as inferred from lipoate reduction assays and increased chelatable intracellular zinc concentrations. RNA microarray gene expression assays revealed that 6 induces endoplasmic reticulum stress response pathways as a result of ROS increase.  相似文献   

9.
Supramolecular interactions are of paramount importance in biology and chemistry, and can be used to develop new vehicles for drug delivery. Recently, there is a surge of interest on self-assembled functional supramolecular structures driven by intermolecular metal–metal interactions in cellular conditions. Herein we report a series of luminescent Pt(ii) complexes [Pt(C^N^Npyr)(CNR)]+ [HC^N^Npyr = 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine)] containing pincer type ligands having pyrazole moieties. These Pt(ii) complexes exert potent cytotoxicity to a panel of cancer cell lines including primary bladder cancer cells and display strong phosphorescence that is highly sensitive to the local environment. The self-assembly of these complexes is significantly affected by pH of the solution medium. Based on TEM, SEM, ESI-MS, absorption and emission spectroscopy, and fluorescence microscopy together with cell based assays, [Pt(C^N^Npyr)(CNR)]+ complexes were observed to self-assemble into orange phosphorescent polymeric aggregates driven by intermolecular Pt(ii)–Pt(ii) and ligand–ligand interactions in a low-pH physiological medium. Importantly, the intracellular assembly and dis-assembly of [Pt(C^N^Npyr)(CNR)]+ are accompanied by change of emission color from orange to green. These [Pt(C^N^Npyr)(CNR)]+ complexes accumulated in the lysosomes of cancer cells, increased the lysosomal membrane permeability and induced cell death. One of these platinum(ii) complexes formed hydrogels which displayed pH-responsive and sustained release properties, leading to low-pH-stimulated and time-dependent cytotoxicity towards cancer cells. These hydrogels can function as vehicles to deliver anti-cancer agent cargo, such as the bioactive natural products studied in this work.  相似文献   

10.
The Cr(CO)3(CH3CN)3 complex is found to catalyze the 1,4-addition of hydrogen to 1,3-dienes such as 2-methyl-1,3-butadiene, trans-1,3-pentadiene, and trans, trans-2,4-hexadiene at low temperature (40°) and low H2 pressure (20 psi). For trans, trans-2,4-hexadiene the only product obtained when D2 is used is 2,5-dideuterio-cis-3-hexene. The catalytic 1,4-hydrogenation can be carried out in neat dienes, and turnover numbers for the catalyst of greater than 3000 have been observed.  相似文献   

11.
Iron salts and N-heterocyclic carbene (NHC) ligands is a highly effective combination in catalysis, with observed catalytic activities being highly dependent on the nature of the NHC ligand. Detailed spectroscopic and electronic structure studies have been performed on both three- and four-coordinate iron(ii)–NHC complexes using a combined magnetic circular dichroism (MCD) and density functional theory (DFT) approach that provide detailed insight into the relative ligation properties of NHCs compared to traditional phosphine and amine ligands as well as the effects of NHC backbone structural variations on iron(ii)–NHC bonding. Near-infrared MCD studies indicate that 10Dq(T d) for (NHC)2FeCl2 complexes is intermediate between those for comparable amine and phosphine complexes, demonstrating that such iron(ii)–NHC and iron(ii)–phosphine complexes are not simply analogues of one another. Theoretical studies including charge decomposition analysis indicate that the NHC ligands are slightly stronger donor ligands than phosphines but also result in significant weakening of the Fe–Cl bonds compared to phosphine and amine ligands. The net result is significant differences in the d orbital energies in four-coordinate (NHC)2FeCl2 complexes relative to the comparable phosphine complexes, where such electronic structure differences are likely a significant contributing factor to the differing catalytic performances observed with these ligands. Furthermore, Mössbauer, MCD and DFT studies of the effects of NHC backbone structure variations (i.e. saturated, unsaturated, chlorinated) on iron–NHC bonding and electronic structure in both three- and four-coordinate iron(ii)–NHC complexes indicate only small differences as a function of backbone structure, that are likely amplified at lower oxidation states of iron due to the resulting decrease in the energy separation between the occupied iron d orbitals and the unoccupied NHC π* orbitals.  相似文献   

12.
Conclusions The Ni(acac)2-Et3Al and Ni(acac)2-i-Bu3Al systems effectively catalyze with 1,4-addition of methyldichlorosilane to 1,3-dienes at 20–25C. In the case of butadiene and isoprene, the reaction is accompanied by the formation of appreciable amounts of bis-silylated products, viz., 1,4-bis(methyldichlorosilyl)-cis-2-butene and 1,4-bis(methyldichlorosilyl)-3-methyl-2-butene.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 418–421, February, 1979.  相似文献   

13.
Dual intermolecular hydrophosphination of conjugated diynes with 2 equiv of diphenylphosphine was catalyzed by ytterbium complexes, Yb(η2-Ph2CNPh)(hmpa)3 (1) and Yb[N(SiMe3)2]3(hmpa)2 (2), to give the corresponding 1,4-bis(diphenylphosphinyl)buta-1,3-dienes in high yields after oxidative work-up. Distribution of the four possible stereoisomers sharply depended on substituents of the substrates. (Z,Z)-Isomers were predominantly obtained from the disubstituted diynes, together with minor (Z,E)-isomers. On the other hand, the reaction of the terminal diynes provided major (E,Z) and minor (E,E)-butadienes. 1,4-Di-tert-butylbuta-1,3-diyne was exclusively converted to an allenic compound. Moreover, the dual hydrophosphination using phenyphosphine was also performed with 1 and 2. Thus, the reaction of 2 equiv of aromatic alkynes with PhPH2 and subsequent oxidation gave bis(alkenyl)phosphine oxides in preference of the (Z,Z)-stereoisomers.  相似文献   

14.
We designed and synthesized a heteroleptic osmium(ii) complex with two different tridentate ligands, Os. Os can absorb the full wavelength range of visible light owing to S–T transitions, and this was supported by TD-DFT calculations. Excitation of Os using visible light of any wavelength generates the same lowest triplet metal-to-ligand charge-transfer excited state, the lifetime of which is relatively long (τem = 40 ns). Since excited Os could be reductively quenched by 1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole, Os displays high potential as a panchromatic photosensitizer. Using a combination of Os and a ruthenium(ii) catalyst, CO2 was photocatalytically reduced to HCOOH via irradiation with 725 nm light, and the turnover number reached 81; irradiation with light at λex > 770 nm also photocatalytically induced HCOOH formation. These results clearly indicate that Os can function as a panchromatic redox photosensitizer.

The osmium(ii) complex functioned as a panchromatic photosensitizer and drove CO2 reduction.  相似文献   

15.
The crystal structure of complex [Pb{HB(pz)3}Au(C6Cl5)2] 1 displays an unsupported Au(i)···Pb(ii) interaction. This complex emits at 480 nm in the solid state due to an aurate(i) to lead(ii) charge transfer, in which the existence of a metallophilic interaction is a pre-requisite. Ab initio calculations show a very strong Au(i)···Pb(ii) closed-shell interaction of –390 kJ mol–1, which has an ionic plus a dispersive (van der Waals) nature strengthened by large relativistic effects (>17%).  相似文献   

16.
Piotr Pawlu? 《Tetrahedron》2009,65(28):5497-1866
A new efficient synthetic protocol for the highly stereoselective synthesis of unsymmetrical (or symmetrical) (E)-stilbenes and (E,E)-1,4-diarylbuta-1,3-dienes based on sequential palladium-catalyzed Heck arylation-Hiyama cross-coupling reactions using cyclic gem-bis(silyl)ethene as alkenyl building block is reported.  相似文献   

17.
enThe 1(Z),4(Z)-1,5-dilithium-3R-3-methoxypenta-1,4-dienes react with diaryldichlorogermanes and dialkyldichlorogermanes to give the 1,1-diaryl- and 1,1-dialkyl-4R-4-methoxy-1-germacyclohexa-2,5-dienes, respectively.With phenyltrichlorogermane, methyl- and ethyl-trichlorogermanes the E/Z-isomeric 1-phenyl(methyl,ethyl)-1-chloro-4R-4-methoxy-1-germacyclohexa-1,3-dienes are obtained, reduction of these with LiAlH4 makes the corresponding 1-aryl-(alkyl)-1H-4R-4-methoxy-1-germacyclohexa-2,5-dienes available.Reduction of 1-ethyl-1-chloro-4-phenyl-4-methoxy-1-germacyclohexa-2,5-diene with LiAlH4 yields by additional ether cleavage 1-ethyl-1H-4-phenyl-1-germacyclohexa-2,4-diene.The 1H NMR (60 MHz, 90 MHz), 13C NMR, IR and mass spectra are discussed, several 1H NMR spectra are calculated according to the LAOCOONLAME program.  相似文献   

18.
A dinickel(0)–N2 complex, stabilized with a rigid acridane-based PNP pincer ligand, was studied for its ability to activate C(sp2)–H and C(sp2)–O bonds. Stabilized by a Ni–μ–N2–Na+ interaction, it activates C–H bonds of unfunctionalized arenes, affording nickel–aryl and nickel–hydride products. Concomitantly, two sodium cations get reduced to Na(0), which was identified and quantified by several methods. Our experimental results, including product analysis and kinetic measurements, strongly suggest that this C(sp2)–H activation does not follow the typical oxidative addition mechanism occurring at a low-valent single metal centre. Instead, via a bimolecular pathway, two powerfully reducing nickel ions cooperatively activate an arene C–H bond and concomitantly reduce two Lewis acidic alkali metals under ambient conditions. As a novel synthetic protocol, nickel(ii)–aryl species were directly synthesized from nickel(ii) precursors in benzene or toluene with excess Na under ambient conditions. Furthermore, when the dinickel(0)–N2 complex is accessed via reduction of the nickel(ii)–phenyl species, the resulting phenyl anion deprotonates a C–H bond of glyme or 15-crown-5 leading to C–O bond cleavage, which produces vinyl ether. The dinickel(0)–N2 species then cleaves the C(sp2)–O bond of vinyl ether to produce a nickel(ii)–vinyl complex. These results may provide a new strategy for the activation of C–H and C–O bonds mediated by a low valent nickel ion supported by a structurally rigidified ligand scaffold.

A structurally rigidified nickel(0) complex was found to be capable of cleaving both C(sp2)–H and C(sp2)–O bonds.  相似文献   

19.
The incorporation of an N-heterocyclic carbene (NHC) moiety into a self-assembled MII4L6 cage framework required the NHC first to be metallated with gold(i). Bimetallic cages could then be constructed using zinc(ii) and cadmium(ii) templates, showing weak luminescence. The cages were destroyed by the addition of further gold(i) in the form of AuI(2,4,6-trimethoxybenzonitrile)2SbF6, which caused the reversibly-formed cages to disassemble and controllably release the AuI-NHC subcomponent into solution. This release in turn induced the growth of gold nanoparticles. The rate of dianiline release could be tuned by capsule design or through the addition of chemical stimuli, with different release profiles giving rise to different nanoparticle morphologies.  相似文献   

20.
Photoexcitation is one of the acknowledged methods to activate Ni-based cross-coupling reactions, but factors that govern the photoactivity of organonickel complexes have not yet been established. Here we report the excited-state cross-coupling activities of Ni(ii) metallacycle compounds, which display ∼104 times enhancement for the C–S bond-forming reductive elimination reaction upon Ni-centered ligand-field transitions. The effects of excitation energy and ancillary ligands on photoactivity have been investigated with 17 different nickelacycle species in combination with four corresponding acyclic complexes. Spectroscopic and computational electronic structural characterizations reveal that, regardless of coordinated species, d–d transitions can induce Ni–C bond homolysis, and that the reactivity of the resulting Ni(i) species determines the products of the overall reaction. The photoactivity mechanism established in this study provides general insights into the excited-state chemistry of organonickel(ii) complexes.

d–d excitations can accelerate C–S reductive eliminations of nickelacycles via intersystem crossing to a repulsive 3(C-to-Ni charge transfer) state inducing Ni–C bond homolysis. This homolytic photoreactivity is common for organonickel(ii) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号