首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The single-isomer polyanionic cyclodextrin (CD) derivative heptakis-6-sulfato-beta-cyclodextrin (HSbetaCD) has been tested as chiral additive for the enantioseparation of non-steroidal anti-inflammatory drugs, such as fenoprofen, flurbiprofen, ibuprofen and ketoprofen, in capillary electrophoresis, using a pH 2.5 phosphoric acid-triethanolamine buffer in the reversed polarity mode. In most cases, the enantiomers of these acidic compounds, present in uncharged form at that pH, were only poorly resolved with HSbetaCD alone. However, the use of HSbetaCD in combination with the neutral CD derivative, heptakis-(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD), which has a particularly high enantioselectivity towards these compounds, has led to complete enantioresolution in reasonably low migration times in most cases. Affinity constants for the enantiomers with the two cyclodextrins were determined, using linear regression in a two-step approach. Affinity constants with the charged HSbetaCD were first calculated in single systems while those with the neutral TMbetaCD were determined in dual systems. Selectivity for the enantiomeric separation of these compounds in dual CD systems could be predicted using recently developed mathematical models.  相似文献   

2.
Cyclodextrin (CD) derivatives are the most efficient and frequently used chiral selectors (CSs) in capillary electrophoresis (CE). There are situations when the use of a single CD as CS is not enough to obtain efficient chiral discrimination of the enantiomers; in these cases, sometimes this problem can be resolved using a dual CD system. The use of dual CD systems can often dramatically enhance enantioseparation selectivity and can be applied for the separation of many analytes of pharmaceutical interest for which enantioseparation by CE with another CS systems can be problematic. Usually in a dual CD system an anionic CD is used together with a neutral one, but there are situations when the use of a cationic CD with a neutral one or the use of two neutral CDs or even two ionized CDs can be an efficient solution. In the current review we present general aspects of the use of dual CD systems in the analysis of pharmaceutical substances. Several examples of applications of the use of dual CD systems in the analysis of pharmaceuticals are selected and discussed. Theoretical aspects regarding the separation of enantiomers through simultaneous interaction with the two CSs are also explained. Finally, advantages, disadvantages, potential and new direction in this chiral analysis field are highlighted.  相似文献   

3.
The enantiomeric separation of a series of acidic pharmaceuticals (mostly nonsteroidal anti-inflammatory drugs) has been investigated in NACE systems using single-isomer amino beta-CD derivatives. The first part of this study consisted of the selection of the basic experimental conditions to separate efficiently the enantiomers of acidic drugs. Several parameters, such as the nature of the ionic BGE components, were studied and a methanolic solution of ammonium acetate containing the cationic CD was selected as BGE. A D-optimal design with 20 experimental points was then applied and the nature and concentration of the CD were found to have a significant effect on the enantiomeric resolution for all studied compounds. Resolution (R(s)) values were always higher with 6-monodeoxy-6-mono(3-hydroxy)propylamino-beta-CD (PA-beta-CD) compared to those obtained with 6-monodeoxy-6-mono(2-hydroxy)propylamino-beta-CD (IPA-beta-CD). However, the latter led to shorter migration times. Generic NACE conditions were then selected by means of the multivariate approach in order to obtain the highest R(s) values in a minimum amount of time. Finally, dependence of separation selectivity, resolution, as well as mobility difference on chiral selector concentration was discussed and binding constants with PA-beta-CD were estimated for the two enantiomers of one of the model compounds, suprofen in these NACE systems.  相似文献   

4.
To improve resolution power of chiral selector and enantiomeric peak efficiency in CE, single isomer negatively charged β‐CD derivatives, mono(6‐deoxy‐6‐sulfoethylthio)‐β‐CD (SET‐β‐CD) bearing one negative charge and mono[6‐deoxy‐6‐(6‐sulfooxy‐5,5‐bis‐sulfooxymethyl)hexylthio]‐β‐CD (SMHT‐β‐CD) carrying three negative charges, were synthesized. The structure of these two β‐CD derivatives was confirmed by 1H NMR and MS. SET‐β‐CD and SMHT‐β‐CD successfully resolved the enantiomers of several basic model compounds. SMHT‐β‐CD provided for a significantly greater enantioseparation than SET‐β‐CD at lower concentrations. This appears to be due to the higher binding affinity of SMHT‐β‐CD to the model compounds and the wider separation window resulting from an increased countercurrent mobility of the selector. Overall, the new chiral selectors provided enantioseparations with high peak efficiency while avoiding peak distortion due to polydispersive and electrodispersive effects. The information obtained from an apparent binding constant study suggested that the enantioseparation of the model compounds followed the predictions of charged resolving agent migration model and that the observed degree of enantioseparation difference were due to the magnitude of differences in both enantiomer‐chiral selector binding affinities (ΔK) and the mobilities of the complexed enantiomers (Δμc).  相似文献   

5.
The enantiomeric separation of various kinds of basic pharmaceuticals has been investigated in nonaqueous capillary electrophoresis (NACE) systems using an ion-pairing reagent in combination with cyclodextrins (CDs). The simultaneous addition to the methanolic background electrolyte (BGE) of (+)-S-camphorsulfonate or alkanesulfonates and an anionic beta-cyclodextrin derivative, heptakis(2,3-dimethyl-6-sulfato)-beta-cyclodextrin (HDMS-beta-CD), led to partial or complete enantioresolution in most cases. In the absence of ion-pairing reagent, the enantiomeric resolution obtained with this CD derivative was most often completely lost or strongly reduced, indicating the important role of ion-pairing in the chiral recognition mechanism in these NACE systems. The influence of the nature and concentration of the counterion and the anionic CD derivative on the enantioseparation of basic compounds was studied. Synergistic effects between these two kinds of charged additives were clearly observed.  相似文献   

6.
Lin CE  Liao WS  Cheng HT  Kuo CM  Liu YC 《Electrophoresis》2005,26(20):3869-3877
In this study, enantioseparations of five phenothiazines, including promethazine, ethopropazine, trimeprazine, methotrimeprazine, and thioridazine, in CD-modified CZE using dual CD systems consisting of randomly sulfate-substituted CD (MI-S-beta-CD) and a neutral CD as chiral selectors in a citrate buffer (100 mM) at pH 3.0 were investigated. The results indicate that MI-S-beta-CD is an excellent chiral selector for enantioseparation of ethopropazine. The enantiomers of promethazine can also be baseline-resolved with MI-S-beta-CD at concentrations in the range of 0.5-1.0% w/v. On the other hand, thioridazine and trimeprazine interact strongly with neutral CDs. As a result, the enantioselectivity of these two phenothiazines is remarkably and synergistically enhanced with increasing the concentration of neutral CDs in the presence of MI-S-beta-CD and simultaneous enantioseparations of these phenothiazines, except for methotrimeprazine, could favorably be achieved with the use of dual CD systems. Moreover, by varying the concentration of beta-CD or gamma-CD at a fixed concentration of MI-S-beta-CD (0.75% w/v) reversal of the enantiomer migration order of promethazine occurred. This may be attributable to the opposite effects of charged and neutral CDs on the mobility of the enantiomers of promethazine.  相似文献   

7.
It has been reported that chiral dual system is able to improve the enantioseparation of enantiomers in many cases. Currently, the dual systems involved in CE chiral separation are mostly dual CDs systems, and the polysaccharides‐based chiral dual system was reported in only one paper. To the best of our knowledge, the use of chondroitin sulfate C (CSC)‐based dual system for enantiomeric separation has not been reported previously. Herein, four CSC‐based chiral dual systems, namely CSC/glycogen, CSC/chondroitin sulfate A (CSA), CSC/hydroxypropyl‐β‐CD (HP‐β‐CD), as well as CSC/β‐CD (β‐CD), were evaluated for the first time for their enantioseparation capability by CE in this paper. During the course of the work, the influences of chiral selector concentration and buffer pH values on enantioseparation in dual systems were systematically investigated. Under the optimized conditions, the dual system consisting of CSC and glycogen exhibited better separations toward nefopam, duloxetine, sulconazole, atenolol, laudanosine, and cetirizine enantiomers compared to the single CSC or glycogen system. The combination of CSC and HP‐β‐CD improved the separation of amlodipine and chlorphenamine enantiomers. However, no synergistic effect was observed in the CSC/CSA and CSC/β‐CD systems.  相似文献   

8.
A family of single-isomer amino-beta-cyclodextrin (amino-beta-CD) derivatives containing an amino or (hydroxy)alkylamino group in one of the primary positions has been synthesized. The steric effect and hydrogen bond forming ability of the different substituents on enantioseparation of acidic enantiomers has been studied by capillary electrophoresis (CE). Three enantiomeric model compounds (mandelic acid, cis-permethrinic acid, and cis-deltamethrinic acid) having significantly different apparent complex stability constants with beta-CD were applied in the experiments. Dependence of separation selectivity, resolution as well as mobility difference on chiral selector concentration (0.1-20 mM, pH 6.0) was investigated. Each amino-beta-CD showed higher enantioselectivity than the native beta-CD. One hydroxyalkyl group attached to the primary amino N-atom significantly increased both the enantioselectivity and the resolution compared to the primary amino-beta-CD, while two hydroxyalkyl moieties decreased them due to the predominance of steric hindrance. The value of the apparent complex stability constants obtained suited well the mobility difference model (by Wren). On the other hand, the optimum selector concentrations calculated according to the model were slightly lower than the experienced concentrations giving the maximum enantioresolution of enantiomers.  相似文献   

9.
The separation of thalidomide (TD) and its hydroxylated metabolites including their simultaneous enantioseparation was studied in capillary electrophoresis (CE) using four different randomly substituted charged cyclodextrin (CD) derivatives, the combinations of some of them with each other, and beta-CD. TD, as well as two metabolites recently found in incubations of human liver microsomes and human blood, 5-hydroxythalidomide (5-OH-TD) and one of the diastereomeric 5'-hydroxythalidomides (5'-OH-TD), are neutral compounds. Therefore, they were resolved using charged chiral selectors in CE. Two different separation modes (normal polarity and carrier mode) and two different capillaries (fused-silica and polyacrylamide-coated) were tested. Based on the behavior of the individual CDs, their designed combinations were selected in order to improve the separation selectivity and enantioselectivity. Under optimized conditions all three chiral compounds and their enantiomers were resolved simultaneously.  相似文献   

10.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was applied to the enantioseparation of three binaphthyl derivatives using neutral CDs (i.e., beta- and gamma-CD) in combination with various chiral amino acid-based polymeric surfactants (PSs). Both the D- and L-configurations of poly(sodium N-undecanoyl alaninate), poly(sodium N-undecanoyl leucinate), and poly(sodium N-undecanoyl valinate) (poly(L-SUV)) were synthesized. The retention behavior of the three binaphthyl derivatives under optimum electrophoretic conditions using a single chiral additive (PS or CD) is discussed. In addition, the effect of CD cavity size and stereochemical configuration of polymeric surfactants on selectivity (alpha) and resolution (Rs) was investigated. The enantioseparation of (+/-)1,1'-binaphthyl-2,2'-diamine gave a reversal of enantiomeric order when using beta-CD in combination with any of the three D-configuration PS. However, better enantioseparation is obtained when using the corresponding L-configuration PS with beta-CD. A reversal of migration order (RMO) for the enantiomers of (+/-)1,1'-bi-2-naphthol was observed upon the addition of 10 mM gamma-CD to poly(L-SUV). However, no RMO of (+/-)1,1'-bi-2-naphthol was seen when either beta-CD or gamma-CD was combined with D-PS. The enantiomers of (+/-)1,1'-binaphthyl-2,2'-diyl hydrogen phosphate showed little enantioselective behavior toward the PS alone. However, combined D- or L-PS and beta-CD or gamma-CD systems gave increased Rs and alpha values. The chiral recognition of binaphthyl derivatives observed resulting from the various combinations of two chiral selectors is discussed.  相似文献   

11.
Presented in this study is an approach to optimize conditions for capillary electrophoresis separations of multianalyte enantiomeric pairs (D- and L-dansyl (Dns)-amino acids) that involves the rational use of combinations of cyclodextrins (CDs) as enantioselective running buffer additives. Migration data is experimentally obtained for a range of concentrations for native CDs used individually and employed to determine inclusion constants for the Dns-amino acids of interest. An expression for the mobility of the amino acids when multiple (two in this work) CDs are present in the running buffer is used to simulate separations for more complex CD systems. A chromatographic response function involving predicted resolution is generated to gauge the quality of these separations. Simplex methods are then employed for the first time to optimize conditions for the separation of amino acid enantiomers. The validity of this approach is demonstrated for separations of five Dns-amino acid enantiomers using gamma- and beta-CDs at various concentrations. Extending the dual-CD approach to other CDs and increasing the number of CDs beyond two should be possible. To this end, preliminary experiments are performed by using several available single-isomer, derivatized CDs (individually) to determine if they have potential for further studies. Although results with these particular derivatized CDs are not encouraging, we did find that molecular mechanics modeling is useful in interpreting those cases in which low inclusion constants possibly contributed to the ineffectiveness of the CDs.  相似文献   

12.
Izumoto S  Nishi H 《Electrophoresis》1999,20(1):189-197
Direct separation of enantiomers of drugs was investigated by capillary electrophoresis employing mixtures of charged cyclodextrin derivatives (CDs) and electrically neutral CDs (i.e., dual CD system). Among various charged CDs employed, it was found that beta-CD sulfate showed relatively wide enantioselectivity for a wide variety of drugs under acidic conditions. Then separation of enantiomers was performed by employing beta-CD sulfate and the effect of the addition of electrically neutral CDs to the buffers containing beta-CD sulfate was investigated. Through the addition of electrically neutral CDs to the buffers containing the charged CD, resolution of most of the enantiomers was improved, compared with those with the charged CD alone. It was also found that the ring size (alpha, beta, gamma,), the substitution groups and the concentration of the additional electrically neutral CDs affected the enantioselectivity. For example, alpha-CD addition was effective for the separation of enantiomers of chlorpheniramine and hydroxypropyl-beta-CD was effective for the enantiomer separation of trimetoquinol isomer. The application of the method in optical purity testing is also briefly mentioned.  相似文献   

13.
Lin CE  Lin SL  Fang IJ  Liao WS  Chen CC 《Electrophoresis》2004,25(16):2786-2794
We investigated the enantioseparations of racemic hydrobenzoin, together with benzoin and benzoin methyl ether, in capillary electrophoresis (CE) using the single-isomer heptakis(2,3-dihydroxy-6-O-sulfo)-beta-cyclodextrin (SI-S-beta-CD) as a chiral selector in the presence and absence of borate complexation and enantiomer migration reversal of hydrobenzoin with a dual CD system consisting of SI-S-beta-CD and beta-CD in the presence of borate complexation at pH 9.0 in a borate buffer. The enantioselectivity of hydrobenzoin increased remarkably with increasing SI-S-beta-CD concentration and the enantioseparation depended on CD complexation between hydrobenzoin-borate and SI-S-beta-CD. The (S,S)-enantiomer of hydrobenzoin-borate complexes interacted more strongly than the (R,R)-enantiomer with SI-S-beta-CD. The enantiomers of hydrobenzoin could be baseline-resolved in the presence of SI-S-beta-CD at a concentration as low as 0.1% w/v, whereas the three test analytes were simultaneously enantioseparated with addition of 0.3% w/v SI-S-beta-CD or at concentrations >2.0% w/v in a borate buffer and 0.5% w/v in a phosphate background electrolyte at pH 9.0. Compared with the results obtained previously using randomly sulfated beta-CD (MI-S-beta-CD) in a borate buffer, enantioseparation of these three benzoin compounds is more advantageously aided by SI-S-beta-CD as the chiral selector. The enantioselectivity of hydrobenzoin depended greatly on the degree of substitution of sulfated beta-CD. Moreover, binding constants of the enantiomers of benzoin compounds to SI-S-beta-CD and those of hydrobenzoin-borate complexes to SI-S-beta-CD were evaluated for a better understanding of the role of CD complexation in the enantioseparation and chiral recognition. Enantiomer migration reversal of hydrobenzoin could be observed by varying the concentration of beta-CD, while keeping SI-S-beta-CD at a relatively low concentration. SI-S-beta-CD and beta-CD showed the same chiral recognition pattern but they exhibited opposite effects on the mobility of the enantiomers.  相似文献   

14.
Baseline separation of ten new, substituted [1-(imidazo-1-yl)-1-phenylmethyl)] benzothiazolinone and benzoxazolinone derivatives with one chiral center was achieved using cyclodextrin-capillary zone electrophoresis (CD-CZE). A method for the enantiomeric resolution of these compounds was developed using neutral CDs (native alpha-, beta-, gamma-CDs or alpha-, beta-, gamma-hydroxypropyl (HP)-CDs) as chiral selectors. Operational parameters including the nature and concentration of the chiral selectors, pH, ionic strength, organic modifiers, temperature, and applied voltage were investigated. The use of neutral CDs provides enantiomeric resolution by inclusion of compounds in the CD cavity. The HP-alpha-CD and HP-beta-CD were found to be the most effective complexing agents and allowed efficient enantiomeric resolutions. Optimal separation of N-imidazole derivatives was obtained using 50 mM phosphate buffer at pH 2.5 containing either HP-alpha-CD or HP-beta-CD (7.5-12.5 mM) at 25 degrees C, with an applied field of 0.50 kV.cm(-1) giving resolution factors Rs superior to 1.70 with migration times of the second enantiomer less than 13 min. The same enantiomer migration order observed for all molecules can be related to a close interaction mechanism with CDs. The influence of structural features of the solutes on Rs and tm was studied. The lipophilic character (log kw) of the solutes and the apparent and averaged association constants of inclusion complexes for four compounds with the six different CDs led us to rationalize the enantioseparation mechanisms. The conclusions were corroborated with reversed-phase high-performance liquid chromatography (HPLC) on chiral stationary phases (CSPs) based on CDs.  相似文献   

15.
The members of the enantiomeric pairs frequently show rather different biological effects, so their chiral selective synthesis, pharmacological studies and analysis are necessary. CE has unique advantages in chiral analysis. The most frequently used chiral selectors are CDs in this field. This paper gives a short view on the advantages on CE in direct chiral separations, emphasizing the role of CDs. The reason for the broad selectivity spectra of CDs is discussed in detail. The physical background of chiral selective separations is briefly shown in CE. Their interaction mechanisms are shortly defined. The general trend of their use is statistically evaluated. Most frequently used CDs and CD derivatives are characterized. Advantages of ionizable CDs and single-isomer derivatives are shown. The general trend of their use is established.  相似文献   

16.
Lee D  Shamsi SA 《Electrophoresis》2002,23(9):1314-1319
Enantiomeric separations of six anionic and two neutral racemates were achieved using a fully substituted heptakis(6-hydroxyethylamino-6-deoxy)-beta-cyclodextrin (beta-CD-EA) as a chiral selector. As beta-CD-EA provides a dynamic coating on the capillary wall, reverse-polarity capillary electrophoresis (CE) configuration is applied for separations of anionic and neutral chiral compounds. Chiral separations of various classes of anionic and neutral enantiomers were found to be highly dependent on pH because the degree of protonation of beta-CD-EA can alter the shape of the CD cavity by charge repulsion, altering complexation, aiding selectivity, and leading to better enantiomeric separation. In general, the chiral resolution of anionic enantiomers was enhanced at higher pH. This suggests that carboxylate or phosphate groups on the analyte may interact with the protonated amine groups of cationic CD. The successful enantioseparation was achieved in a pH range of 6.6-7.8 for all six anionic analytes, in the presence of 10 mM beta-CD-EA.  相似文献   

17.
Grard S  Morin P  Dreux M  Ribet JP 《Electrophoresis》2000,21(14):3028-3034
Today, chiral separations of cationic drugs by capillary electrophoresis are generally carried out by adding negatively charged cyclodextrins (CDs) to the running buffer while anionic or neutral drug separations require the use of dual-CD systems (mixtures of neutral and charged CDs). Chiral separation of some basic drugs (idazoxan, efaroxan, milnacipran) has been studied by using mixtures of sulfated-beta-CD (S-beta-CD) and hydroxypropyl-gamma-CD (HP-gamma-CD). The influence of the following parameters (nature and concentration of neutral CD, concentration of S-gamma-CD) on many separation factors (electrophoretic mobility, selectivity, efficiency, asymmetry factor, resolution) demonstrated that dual-CD systems are useful for chiral separation of basic drugs in order to improve the symmetry of the second-migrating enantiomer. Indeed, the neutral CD reduces the extent of electromigration dispersion by mobility tuning. Finally, the 0.5 mg/mL S-beta-CD/5 mg/mL HP-gamma-CD dual system has allowed the chiral separation of idazoxan, efaroxan and milnacipran enantiomers in less than 9 min.  相似文献   

18.
Baseline separation of 18 new substituted benzimidazole derivatives, potent AMP‐activated protein kinase (AMPK) activators, with one chiral center, was achieved by CD‐EKC using sulfated and highly sulfated CDs (SCDs and HS‐CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The SCDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times around 6 min using 25 mM phosphate buffer at pH 2.5 containing either β‐S‐CD, HS‐β‐CD, HS‐γ‐CD (3 or 4% w/v) at 25°C, with a voltage of 20 kV. The apparent association constants of the inclusion complexes were calculated. The study of the solute structure‐enantioseparation relationships seems to show the high contribution of the interactions between the solutes phenyl ring and the CDs to the enantiorecognition process. The optimized method was briefly validated (LOD less than 1%) and the purity of enantiomers of compound 3 was determined. The enantiomer migration shows reversal order depending on the kind of CD.  相似文献   

19.
Capillary electrophoresis (CE) is a powerful separation technique that was used in a wide range of analytical chemical applications. Cyclodextrins(CDs) are the most commonly used chiral selectors in chiral capillary electrophoresis at the present time. Under neutral conditions, however, native CDs are neutral and usually applicable only for the enantioseparation of charged analyses. To overcome this defect we modified α- and β-CD with a L-cysteine moiety and used the CD derivatives as chiral selectors for the separation of a-amino acid enantiomers by the ligand exchange mode.  相似文献   

20.
Using cyclodextrin capillary zone electrophoresis (CD-CZE), baseline separation of synthetic tetrahydronaphthalenic derivatives, potential melatoninergic compounds, was achieved. A method for the enantioresolution of these tetralins and determination of their enantiomeric purity was developed using anionic CDs (highly sulfated-CD or highly S-CD) as chiral selectors and capillaries dynamically coated with polyethylene oxide (PEO). Operational parameters such as the nature and concentration of the chiral selectors, buffer pH, organic modifiers, temperature and applied voltage were investigated. The use of charged CDs provides a driving force for our neutral compounds in the running buffer and enantiomeric resolution by inclusion of compounds in the CD cavity. The highly S-beta-CD was found to be the most effective complexing agent, allowing good enantiomeric resolution. The complete resolution of three tetralin compounds was obtained using 25 mM phosphate buffer at pH 2.5 containing 2.5% w/v of highly S-beta-CD at 25 degrees C with an applied field of 0.25 kV/cm. The apparent association constants of the inclusion complexes were calculated. This optimized method was validated in terms of linearity, sensitivity, accuracy and recovery. The enantiomeric purity for the three molecules was determined and the detection limit of enantiomer impurities is about 0.3-0.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号