首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ECT-spline curves are generated from different local ECT-systems via connection matrices. If they are nonsingular, lower triangular and totally positive there is a basis of the space of ECT-splines consisting of functions having minimal compact supports, normalized either to form a nonnegative partition of unity or to have integral one. In this paper such ECT-B-splines are defined by generalized divided differences. This definition reduces to the classical one in case of a Schoenberg space. Under suitable assumptions it leads to a recursive method for computing the ECT-B-splines that reduces to the de Boor–Mansion–Cox recursion in case of ordinary polynomial splines and to Lyche's recursion in case of Tchebycheff splines [Mühlbach and Tang, Calculation of ECT-B-splines and of ECT-spline curves recursively, in preparation].There is an ECT-spline space naturally adjoint to every ECT-spline space. We also construct B-splines via generalized divided differences for this space and study relations between the two adjoint spaces.  相似文献   

2.
We consider a space of Chebyshev splines whose left and right derivatives satisfy linear constraints that are given by arbitrary nonsingular connection matrices. We show that for almost all knot sequences such spline spaces have basis functions whose support is equal to the support of the ordinary B-splines with the same knots. Consequently, there are knot insertion and evaluation algorithms analogous to de Boors algorithm for ordinary splines.  相似文献   

3.
Cardinal ECT-splines   总被引:1,自引:0,他引:1  
Cardinal ECT-spline curves are generated from one ECT-system of order n which is shifted by integer translations via one connection matrix. If this matrix is nonsingular, lower triangular and totally positive, there exists an ECT-B-spline function N0n(x) having minimal compact support [0,n] whose integer translates span the cardinal ECT-spline space. This B-spline is computed explicitly piece by piece. Involved is the characteristic polynomial of a certain matrix which is the product of a matrix related to the connection matrix and of the generalized Taylor matrix of the basic ECT-system. This approach extends results for polynomial cardinal splines via connection matrices [6] to the more general setting of cardinal ECT-splines. The method is illustrated by two examples based on ECT-systems of rational functions with prescribed poles. Also, a Greens function involved is expressed explicitly as an ECT-B-splines series. AMS subject classification 41A15, 41A05  相似文献   

4.
The use of homogenized knots for manipulating univariate polynomials by blossoming algorithms is extended to piecewise polynomials. A generalization of the B-spline to homogenized knots is studied. The new B-spline retains the triangular blossoming algorithms for evaluation, differentiation and knot insertion. Moreover, the B-spline is locally supported and a Marsden’s identity exists. Spaces of natural splines and certain polynomial spline spaces with more general continuity properties than ordinary splines have bases of B-splines over homogenized knots. Applications to nonpolynomial splines such as trigonometric and hyperbolic splines are made.  相似文献   

5.
The Fourier transforms of B-splines with multiple integer knots are shown to satisfy a simple recursion relation. This recursion formula is applied to derive a generalized two-scale relation for B-splines with multiple knots. Furthermore, the structure of the corresponding autocorrelation symbol is investigated. In particular, it can be observed that the solvability of the cardinal Hermite spline interpolation problem for spline functions of degree 2m+1 and defectr, first considered by Lipow and Schoenberg [9], is equivalent to the Riesz basis property of our B-splines with degreem and defectr. In this way we obtain a new, simple proof for the assertion that the cardinal Hermite spline interpolation problem in [9] has a unique solution.  相似文献   

6.
The use of homogenized knots for manipulating univariate polynomials by blossoming algorithms is extended to piecewise polynomials. A generalization of the B-spline to homogenized knots is studied. The new B-spline retains the triangular blossoming algorithms for evaluation, differentiation and knot insertion. Moreover, the B-spline is locally supported and a Marsden’s identity exists. Spaces of natural splines and certain polynomial spline spaces with more general continuity properties than ordinary splines have bases of B-splines over homogenized knots. Applications to nonpolynomial splines such as trigonometric and hyperbolic splines are made.  相似文献   

7.
We study cobordisms and cobordisms rel boundary of PL locally-flat disk knots D n−2D n . Any two disk knots are cobordant if the cobordisms are not required to fix the boundary sphere knots, and any two even-dimensional disk knots with isotopic boundary knots are cobordant rel boundary. However, the cobordism rel boundary theory of odd-dimensional disk knots is more subtle. Generalizing results of J. Levine on the cobordism of sphere knots, we define disk knot Seifert matrices and show that two higher-dimensional disk knots with isotopic boundaries are cobordant rel boundary if and only if their disk knot Seifert matrices are algebraically cobordant. We also ask which algebraic cobordism classes can be realized given a fixed boundary knot and provide a complete classification when the boundary knot has no 2-torsion in its middle-dimensional Alexander module. In the course of this classification, we establish a close connection between the Blanchfield pairing of a disk knot and the Farber-Levine torsion pairing of its boundary knot (in fact, for disk knots satisfying certain connectivity assumptions, the disk knot Blanchfield pairing will determine the boundary Farber-Levine pairing). In addition, we study the dependence of disk knot Seifert matrices on choices of Seifert surface, demonstrating that all such Seifert matrices are rationally S-equivalent, but not necessarily integrally S-equivalent.  相似文献   

8.
This works complements a recent article (Mazure, J. Comp. Appl. Math. 219(2):457–470, 2008) in which we showed that T. Lyche’s recurrence relations for Chebyshevian B-splines (Lyche, Constr. Approx. 1:155–178, 1985) naturally emerged from blossoms and their properties via de Boor type algorithms. Based on Chebyshevian divided differences, T. Lyche’s approach concerned splines with all sections in the same Chebyshev space and with ordinary connections at the knots. Here, we consider geometrically continuous piecewise Chebyshevian splines, namely, splines with sections in different Chebyshev spaces, and with geometric connections at the knots. In this general framework, we proved in (Mazure, Constr. Approx. 20:603–624, 2004) that existence of B-spline bases could not be separated from existence of blossoms. Actually, the present paper enhances the powerfulness of blossoms in which not only B-splines are inherent, but also their recurrence relations. We compare this fact with the work by G. Mühlbach and Y. Tang (Mühlbach and Tang, Num. Alg. 41:35–78, 2006) who obtained the same recurrence relations via generalised Chebyshevian divided differences, but only under some total positivity assumption on the connexion matrices. We illustrate this comparison with splines with four-dimensional sections. The general situation addressed here also enhances the differences of behaviour between B-splines and the functions of smaller and smaller supports involved in the recurrence relations.  相似文献   

9.
The problems of determining the B–spline form of a C 2 Pythagorean–hodograph (PH) quintic spline curve interpolating given points, and of using this form to make local modifications, are addressed. To achieve the correct order of continuity, a quintic B–spline basis constructed on a knot sequence in which each (interior) knot is of multiplicity 3 is required. C 2 quintic bases on uniform triple knots are constructed for both open and closed C 2 curves, and are used to derive simple explicit formulae for the B–spline control points of C 2 PH quintic spline curves. These B-spline control points are verified, and generalized to the case of non–uniform knots, by applying a knot removal scheme to the Bézier control points of the individual PH quintic spline segments, associated with a set of six–fold knots. Based on the B–spline form, a scheme for the local modification of planar PH quintic splines, in response to a control point displacement, is proposed. Only two contiguous spline segments are modified, but to preserve the PH nature of the modified segments, the continuity between modified and unmodified segments must be relaxed from C 2 to C 1. A number of computed examples are presented, to compare the shape quality of PH quintic and “ordinary” cubic splines subject to control point modifications.  相似文献   

10.
We describe explicitly each stage of a numerically stable algorithm for calculating with exponential tension B-splines with non-uniform choice of tension parameters. These splines are piecewisely in the kernel of D 2(D 2p 2), where D stands for ordinary derivative, defined on arbitrary meshes, with a different choice of the tension parameter p on each interval. The algorithm provides values of the associated B-splines and their generalized and ordinary derivatives by performing positive linear combinations of positive quantities, described as lower-order exponential tension splines. We show that nothing else but the knot insertion algorithm and good approximation of a few elementary functions is needed to achieve machine accuracy. The underlying theory is that of splines based on Chebyshev canonical systems which are not smooth enough to be ECC-systems. First, by de Boor algorithm we construct exponential tension spline of class C 1, and then we use quasi-Oslo type algorithms to evaluate classical non-uniform C 2 tension exponential splines.   相似文献   

11.
The Fourier transforms of B-splines with multiple integer knots are shown to satisfy a simple recursion relation. This recursion formula is applied to derive a generalized two-scale relation for B-splines with multiple knots. Furthermore, the structure of the corresponding autocorrelation symbol is investigated. In particular, it can be observed that the solvability of the cardinal Hermite spline interpolation problem for spline functions of degree 2m+1 and defectr, first considered by Lipow and Schoenberg [9], is equivalent to the Riesz basis property of our B-splines with degreem and defectr. In this way we obtain a new, simple proof for the assertion that the cardinal Hermite spline interpolation problem in [9] has a unique solution.  相似文献   

12.
Piecewise generalized polynomials of different kinds of order n (ECT-splines of order n) are constructed from different ECT-systems of order n via connection matrices which are nonsingular and totally positive.A well-known zero count for polynomial splines is extended to ECT-splines. It is used to construct ECT-B-splines and to show under which conditions ECT-splines will solve modified Hermite-type interpolation problems. Also conditions are specified such that piecewise generalized polynomials form rECT-systems and the interpolation problems associated with may be solved recursively.  相似文献   

13.
We introduce control curves for trigonometric splines and show that they have properties similar to those for classical polynomial splines. In particular, we discuss knot insertion algorithms, and show that as more and more knots are inserted into a trigonometric spline, the associated control curves converge to the spline. In addition, we establish a convex-hull property and a variation-diminishing result.  相似文献   

14.
A Jackson-type estimate is obtained for the approximation of 3 -convex functions by 3 -convex splines with free knots. The order of approximation is the same as for the Jackson-type estimate for unconstrained approximation by splines with free knots. Shape-preserving free knot spline approximation of k -convex functions, k > 3 , is also considered. January 15, 1996. Date revised: December 9, 1996.  相似文献   

15.
In the present work we determine all Chebyshevian spline spaces good for geometric design. By Chebyshevian spline space we mean a space of splines with sections in different Extended Chebyshev spaces and with connection matrices at the knots. We say that such a spline space is good for design when it possesses blossoms. To justify the terminology, let us recall that, in this general framework, existence of blossoms (defined on a restricted set of tuples) makes it possible to develop all the classical geometric design algorithms for splines. Furthermore, existence of blossoms is equivalent to existence of a B-spline bases both in the spline space itself and in all other spline spaces derived from it by insertion of knots. We show that Chebyshevian spline spaces good for design can be described by linear piecewise differential operators associated with systems of piecewise weight functions, with respect to which the connection matrices are identity matrices. Many interesting consequences can be drawn from the latter characterisation: as an example, all Chebsyhevian spline spaces good for design can be built by means of integral recurrence relations.  相似文献   

16.
A refinable spline in ℝ d is a compactly supported refinable function whose support can be decomposed into simplices such that the function is a polynomial on each simplex. The best-known refinable splines in ℝ d are the box splines. Refinable splines play a key role in many applications, such as numerical computation, approximation theory and computer-aided geometric design. Such functions have been classified in one dimension in Dai et al. (Appl. Comput. Harmon. Anal. 22(3), 374–381, 2007), Lawton et al. (Comput. Math. 3, 137–145, 1995). In higher dimensions Sun (J. Approx. Theory 86, 240–252, 1996) characterized those splines when the dilation matrices are of the form A=mI, where m∈ℤ and I is the identity matrix. For more general dilation matrices the problem becomes more complex. In this paper we give a complete classification of refinable splines in ℝ d for arbitrary dilation matrices AM d (ℤ).  相似文献   

17.
Suppose we are given noisy data which are considered to be perturbed values of a smooth, univariate function. In order to approximate these data in the least squares sense, a linear combination of B-splines is used where the tradeoff between smoothness and closeness of the fit is controlled by a smoothing term which regularizes the least squares problem and guarantees unique solvability independent of the position of knots. Moreover, a subset of the knot sequence which defines the B-splines, the so-calledfree knots, is included in the optimization process.The resulting constrained least squares problem which is linear in the spline coefficients but nonlinear in the free knots is reduced to a problem that has only the free knots as variables. The reduced problem is solved by a generalized Gauss-Newton method. The method developed can be combined with a knot removal strategy in order to obtain an approximating spline with as few parameters as possible.Dedicated to Professor Dr.-Ing. habil. Dr. h.c. Helmut Heinrich on the occasion of his 90th birthdayResearch of the second author was partly supported by Deutsche Forschungsgemeinschaft under grant Schm 968/2-1.  相似文献   

18.
In this paper, a method that combines shape preservation and least squares approximation by splines with free knots is developed. Besides the coefficients of the spline a subset of the knot sequence, the so-calledfree knots, is included in the optimization process resulting in a nonlinear least squares problem in both the coefficients and the knots. The original problem, a special case of aconstrained semi-linear least squares problem, is reduced to a problem that has only the knots of the spline as variables. The reduced problem is solved by a generalized Gauss-Newton method. Special emphasise is given to the efficient computation of the residual function and its Jacobian. Dedicated to our colleague and teacher Prof. Dr. J. W. Schmidt on the occasion of his 65th birthday Research of the first author was supported by Deutsche Forschungsgemeinschaft under grant Schm 968/2-1,2-2.  相似文献   

19.
In this paper, a novel methodology is presented for optimal placement and selections of knots, for approximating or fitting curves to data, using smoothing splines. It is well-known that the placement of the knots in smoothing spline approximation has an important and considerable effect on the behavior of the final approximation [1]. However, as pointed out in [2], although spline for approximation is well understood, the knot placement problem has not been dealt with adequately. In the specialized bibliography, several methodologies have been presented for selection and optimization of parameters within B-spline, using techniques based on selecting knots called dominant points, adaptive knots placement, by data selection process, optimal control over the knots, and recently, by using paradigms from computational intelligent, and Bayesian model for automatically determining knot placement in spline modeling. However, a common two-step knot selection strategy, frequently used in the bibliography, is an homogeneous distribution of the knots or equally spaced approach [3].  相似文献   

20.
A method is given for computing the uniform norm of the cardinal Hermite spline operator. This is the operator that takes two bounded biinfinite sequences of numbers into the unique bounded spline of degree 2k − 1(k 2) with knots of multiplicity two at the integers and that interpolates the two given sequences for both functional and first derivative values at the integers. The computational schema relies on knowledge of the Bernoulli splines, while the theoretical aspects make use of some properties of zeros of periodic splines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号