首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of triorganotin(IV) compound Ph2LSnCl (1), (L = 2,6-(t-BuOCH2)2C6H3), with (Bu3Sn)2O resulted to the isolation of Ph2LSn(μ-OH)Bu3SnCl (2), in which a monomeric triorganotin(IV) hydroxide Ph2LSnOH intermolecularly coordinates Bu3SnCl moiety. Compound 2 was characterized by combination of 1H, 13C and 119Sn NMR spectroscopy, ESI/MS, elemental analysis and X-ray diffraction.  相似文献   

2.
1INTRODUCTIONBytreatingFeCo2(CO),(p,-S)withgroupVligands[L=PPh,,AsPh,,PBus",p(OEt),j,monosubstitutedderivativesFeCo2(CO),(p,-S)(L)havebeenobtained{1'2i.13C-NMRshowedthatthereplacementofCObyagroupVligandinFeCo,(CO),(p,-S)isatonecobaltatominthemonosubstitutedderivativet2).How-ever,thesubstitutedderivativeofFeCo,(CO),(p,-S)withP(OCH,Ph),hasnotbeenreportedanditscrystalstructurehasnotbeendetermined.WehavesynthesizedthetitlecompoundFeCo,(CO),(p,-S)[P(OCH,Ph),jandtestifiedth…  相似文献   

3.
The amine PhCH2CH2NH2 undergoes dimetallation by [Ph3Sb(NMe2)2] (1) under mild conditions to give the first structurally authenticated example of an organo-Sb(V) imido complex, [Ph3Sb(μ-NCH2CH2Ph)]2 (2).  相似文献   

4.
The reaction of the unsaturated cluster [(-H)Os3(CO)8{Ph2PCH2P(Ph)C6H4}] 2 with C2H5SH, CH3CH(CH3)SH and C6H5SH are reported. The reaction of 2 with C2H5SH yields the new complexes [Os3(CO)8(-SC2H5)(1-SC2H5){Ph2PCH2P(Ph)C6H4}(-H)] 9 and [Os3(CO)8)(SC2H5)(Ph2PCH2P)(Ph)C6H4}] 8 in 24 and 57% yields respectively and the known compound [(Os3(CO)8)(-SC2H5)(-dppm)(-H)] 7 in 5% yield. Compound 9, which exists as two isomers in solution, converts into 8 almost quantitatively in solution at 25°C and more rapidly in refluxing hexane. Compound8 reacts with H2 at 110°C to give 7 in high yield (86%). Treatment of 2 with propane-2-thiol yields [Os3(CO)8{-SCH(CH3)CH3}{Ph2PCH2P(Ph)C6H4}] 10 and [(Os3(CO)8{-SCH(CH3)CH3}{1-SCH(CH3)CH3}{Ph2PCH2P(Ph)C6H4}(-H)] 11 in 75 and 3% yields respectively while with C6H5SH, [(Os3(CO)8(-SC6H5)(-dppm)(-H)] 6 is obtained as the only product in 75% yield. In both 8 and 10, the thiolato ligand bridges the Os–Os edge which is also bridged by the metallated phenyl group. The new compounds have been characterized by elemental analyses and spectroscopic methods (IR, 1H and 31P NMR). The molecular structures of 7, 8, 9 and 10 are reported as determined by X-ray diffraction studies.  相似文献   

5.
The structure of the previously synthesized triosmium cluster was revised. The structure Os3(μ-H)2(CO)7(μ-C6H4){μ3-Ph2PCH2P(C6H4)Ph} suggested earlier was not confirmed. The cluster has the composition Os3(μ-H)2(CO)7(μ-C5H4N){μ3-Ph2PCH2P(C6H4)Ph} and contains the ortho-metalated pyridine ligand. The X-ray diffraction study of the complex Os3(μ-H)2(CO)7(μ-MeC5H3N){μ3-Ph2PCH2P(C6H4)Ph} containing the ortho-metalated 4-methylpyridine ligand made it possible to distinguish between the C and N atoms of the pyridine ligands in the resulting triosmium clusters.  相似文献   

6.
The activation of C−Br bonds in various bromoalkanes by the biradical [⋅P(μ-NTer)2P⋅] ( 1 ) (Ter=2,6-bis-(2,4,6-trimethylphenyl)-phenyl) is reported, yielding trans-addition products of the type [Br−P(μ-NTer)2P−R] ( 2 ), so-called 1,3-substituted cyclo-1,3-diphospha-2,4-diazanes. This addition reaction, which represents a new easy approach to asymmetrically substituted cyclo-1,3-diphospha-2,4-diazanes, was investigated mechanistically by different spectroscopic methods (NMR, EPR, IR, Raman); the results suggested a stepwise radical reaction mechanism, as evidenced by the in-situ detection of the phosphorus-centered monoradical [⋅P(μ-NTer)2P-R].< To provide further evidence for the radical mechanism, [⋅P(μ-NTer)2P-Et] ( 3Et ⋅) was synthesized directly by reduction of the bromoethane addition product [Br-P(μ-NTer)2P-Et] ( 2 a ) with magnesium, resulting in the formation of the persistent phosphorus-centered monoradical [⋅P(μ-NTer)2P-Et], which could be isolated and fully characterized, including single-crystal X-ray diffraction. Comparison of the EPR spectrum of the radical intermediate in the addition reaction with that of the synthesized new [⋅P(μ-NTer)2P-Et] radical clearly proves the existence of radicals over the course of the reaction of biradical [⋅P(μ-NTer)2P⋅] ( 1 ) with bromoethane. Extensive DFT and coupled cluster calculations corroborate the experimental data for a radical mechanism in the reaction of biradical [⋅P(μ-NTer)2P⋅] with EtBr. In the field of hetero-cyclobutane-1,3-diyls, the demonstration of a stepwise radical reaction represents a new aspect and closes the gap between P-centered biradicals and P-centered monoradicals in terms of radical reactivity.  相似文献   

7.
A series of dipeptide substituted nickel complexes with the general formula, [Ni(P(Ph)(2)N(NNA-amino acid/ester)(2))(2)](BF(4))(2), have been synthesized and characterized (P(2)N(2) = 1,5-diaza-3,7-diphosphacyclooctane, and the dipeptide consists of the non-natural amino acid, 3-(4-aminophenyl)propionic acid (NNA), coupled to amino acid/esters = glutamic acid, alanine, lysine, and aspartic acid). Each of these complexes is an active electrocatalyst for H(2) production. The effects of the outer-coordination sphere on the catalytic activity for the production of H(2) were investigated; specifically, the impact of sterics, the ability of the side chain or backbone to protonate and the pK(a) values of the amino acid side chains were studied by varying the amino acids in the dipeptide. The catalytic rates of the different dipeptide substituted nickel complexes varied by over an order of magnitude. The amino acid derivatives display the fastest rates, while esterification of the terminal carboxylic acids and side chains resulted in a decrease in the catalytic rate by 50-70%, implicating a significant role of protonated sites in the outer-coordination sphere on catalytic activity. For both the amino acid and ester derivatives, the complexes with the largest substituents display the fastest rates, indicating that catalytic activity is not hindered by steric bulk. These studies demonstrate the significant contribution that the outer-coordination sphere can have in tuning the catalytic activity of small molecule hydrogenase mimics.  相似文献   

8.
The compound [Ru4(μ-Se)2(CO)8(μ3-CO)3] (1), has been obtained in good yield by vacuum pyrolysis of [RU3(CO)12] with [Ph2Se2] at 185°C. Reaction of 1 with 1,3-bis(diphenylphosphino)propane at room temperature affords the novel cluster [RU33-Se)2(CO)7(Ph2P(CH2)3PPh2)] (2). The structures of 1 and 2 have been determined by an X-ray diffraction study.  相似文献   

9.
10.
The reaction between Ru3(3-2-PhC2C=CPh)(-dppm)(CO)8 and Co2(CO)8 afforded dark red Co2Ru3(4-C2Ph)(3-C2Ph)(-dppm)(-CO)2(CO)9, shown by an X-ray structure determination to contain a strongly twisted Co2Ru3 bow-tie cluster (central Co), to which two PhC2 units derived from cleavage of the original diyne are attached. One a these is strongly interacting with four metal atoms, the other being attached in the familiar 1,22-mode. The dppm ligand remains bridging two of the Ru atoms.  相似文献   

11.
The mixed phosphine–phosphine oxide Ph2PCH2CH2P(O)Ph2 (dppeO) reacts with either trans-[PdCl2(PhCN)2], Na2[PdCl4] or trans-[PdCl2(DMSO)2] to give trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2]. Treatment of the latter with the metal chlorides, MCl2 · nH2O (M = Mn, Cu, Co, Zn, Hg; n = 4, 2, 6, 1, 0, respectively) or with Me2SnCl2 or SnCl4 · 5H2O, or with UO2(NO3)2 · 6H2O or UO2(OAc)2 · 2H2O gives heterobimetallic complexes: trans-[PdCl2{-Ph2PCH2CH2P(O)Ph2}2MX2] · nH2O. The cobalt complex (MX2 = CoCl2) was unstable in solution (MeOH or EtOH/CHCl3), and reverts to trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] and CoCl2. trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] does not apparently react with either NiCl2 · 6H2O or CdCl2 · 2.5H2O.  相似文献   

12.
Three structurally different metallasiloxanes were formed from reactions between in situ generated suspensions of Ph2Si(OH)2/BuLi (1∶2) in tetrahydrofuran (THF) with, metal dichlorides MgCl2·2THF, CrCl2, or CoCl2 followed by toluene/Py (Py=pyridine) work-up. The X-ray structures are reported for: [Mg{O(Ph2SiO)2}2]-μ-(LiPy)-μ-{(LiPy)3(OH)(Cl)] (1) incorporating two six-membered magnesiasiloxane rings and an MgLi3O3Cl cubane fragment, [{O(Ph2SiO)2}Co{O(Ph2SiO)3}-μ-(LiPy2)2] (2) with both six-and eight-membered cobaltasiloxane rings and [Cr{O(Ph2SiO)2}2-μ-(LiPy2)2] (3) with two six-membered chromiasiloxane rings. Structure assembly in these cases is apparently dictated by the metal dichloride. The compound [{O(Ph2SiO)2}Mg{O(Ph2SiO)3}-μ-(CoClPy)2]·Py (4) is formed from [{O(Ph2SiO)2}Mg{O(Ph2SiO)3}-μ-(LiPy2)2] and CoCl2 (1∶2).  相似文献   

13.
Abstract

Reaction of [Ph2P(E)NP(E)Ph2]? (E = S or Se) with a series of late transition-metal dimers, in thf or MeOH, leads to facile bridge cleavage and formation of new mononuclear compounds.  相似文献   

14.
The reaction of [Ru3(CO)12] with Ph2(pyth)PSe (pyth=5-(2-pyridyl)-2-thienyl) allows to obtain two novel clusters [Ru3(3-Se)2(CO)7{P(pyth)Ph2}2] 1 and [Ru3(3-Se)(-PPh2)(-pyth)(CO)6{P(pyth)Ph2}] 2 in satisfactory yields. The first one exhibits the well-known bicapped, open triangular, 50-electron nido-core, whereas 2, whose crystal structure has been determined, shows the rather rare Ru3Se tetrahedron with the Ph2P and pyth fragments as side-bridging ligands. Morever cluster 2 belongs to the exiguous family of selenido-phosphido clusters not easily achievable by other routes.  相似文献   

15.
The diiron ynamine complex [Fe2(CO)7{-C(Ph)C(NEt2)}] (1) reacts with the diphenylbuta-1, 4-diyne, PhCC-CCPh, in refluxing hexane to yield three isomer complexes [Fe2(CO)6{C(Ph)C(NEt2)C(Ph)C(C2Ph}] (2a), [Fe2(CO)6{C(Ph)C(NEt2)C(C2Ph)C(Ph)}] (2b), and [Fe2(CO)6{NEt2)C(Ph)C(C2)C(Ph)}] (2c) All three compounds were identified by their1H NMR spectra. Compounds2a and2c were characterized by single crystal X-ray diffraction analyses. Crystal data: for2a: space group = P21/n,a = 17.873(1) Å, = 18.388(6) Å,c = 9.429(3) Å = 91.99(3)°,Z = 4.3751 reflections,R = 0.044; for2c: space group = P21/n,a = 40.58(2) å,b = 12.101(9) Å,c = 12.551(5) Å, = 94.29(7)°,Z = 8.4723 reflection,R = 0.076. Complexes2a and2b result from a [2 + 2] cycloaddition between one of the CC triple bonds of the diyne ligand and the FeC carbene bond, whereas2c results from insertion of one of the CC group into the bridging carbene. Addition of [Fe2(CO)9] on2a gave two major products, the tripledecker [Fe3(CO)8{C(Ph)C(NEt2)C(C2Ph)}], (3 and a tetrairon cluster [Fe4(CO)11{C(Ph)C(NEt2)C(Ph)C(C2Ph)}] (4). Both compounds were characterized by single crystal diffraction analyses. Crystal data: for3: space group = P21/n,a = 12.039(3) Å,b = 18.046(3) å,c = 15.270(2) Å, = 90.11(2)°,Z = 4, 1430 reflections,R = 0.067; for4 space group = C2/c,a = 18.633(3) Å,b = 21.467(1)_Å,c = 20.742(2) Å, = 115.03(8)°,Z = 8.992 reflections, R = 0.076. Complex4 is based on a spiked triangular cluster with the alkynyl triple bond attached in 3-parallel mode on the triangular grouping.  相似文献   

16.
Bis(tetraphenylantimony) 1,2-diphenylethanedione dioximate toluene solvate Ph4SbONC(Ph)C(Ph)NOSbPh4 · 2 PhCH3 (I) and tetraphenylantimony 2-hydroxy-1,2-diphenyl(ethanone oximate Ph4SbONC(Ph)CH(Ph)OH (II) have been synthesized by the reaction of pentaphenylantimony with 1,2-diphenylethane dioxime and 2-hydroxy-1,2-diphenylethanone oxime in toluene. A molecule of compound I is centrosymmetric with an inversion center at the midpoint of the C-C bond in the ethane moiety. A crystal of compound II contains two types of crystallographically independent molecules A and B. Antimony atoms in compounds I and II have a distorted tetragonal bipyramidal surrounding: equatorial CSbC and axial CSbO angles are 114.95(10)°–126.82(11)° and 173.24(9)° (I), 117.2(2)°–122.9(2)° and 178.15(18)° (IIA), and 112.3(2)°–127.7(2)° and 175.09(18)° (IIB), respectively. The Sb-C and Sb-O bond lengths are 2.106(3)–2.182(3) and 2.1344(17) ÅI), 2.118(5)–2.4199(5) and 2.153(4)Å(IIA), and 2.106(5)–2.200(5) and 2.120(4) Å (IIB), respectively. A molecule of compounds I, IIA, and IIB has been found to contain Sb...N intramolecular contacts (2.838(3), 2.867(5), and 2.889(5)Å, respectively). Molecules of compounds IIA and IIB contain O-H...N hydrogen bonds (H...N, 1.91(9) and 2.06(8) Å, respectively).  相似文献   

17.
18.
Chelate exo-nido-ruthenacarboranes exo-5,6,10-[RuCl(Ph2P(CH2)4PPh2)]-5,6,10-(μ-H)3-10-H-7,8-R,R′-nido-7,8-C2B9H6 (R, R′ = H, PhCH2) were synthesized by the direct method using the reaction of Cl2Ru(PPh3)(Ph2P(CH2)4PPh2) with [7,8-R,R′-nido-7,8-C2B9H10][K] in benzene. Unsubstituted exo-nido-ruthenacarborane (R, R′ = H) was used in situ for the synthesis of the dinuclear Ru-Cu exo-closo cluster of the formula exo-closo-(Ph3P)Cu(μ-H)Ru(Ph2P(CH2)4PPh2)(η5-C2B9H11). The isomerism of the complex and the crystal structure were studied by NMR spectroscopy and X-ray diffraction. The catalytic activity of the cluster in the atom transfer radical polymerization of methyl methacrylate was investigated.  相似文献   

19.
Me3NO activation of the methylidyne-bridged cluster HRu3(CO)10(μ-COMe) (1) in the presence of the unsaturated diphosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) furnishes the bma-substituted cluster HRu3(CO)8(bma)(μ-COMe) (2) and the diphenylphosphine-substituted cluster HRu3(CO)8(Ph2PH)[μ-PPh2C=CC(O)OC(O)] (3) as the major and minor products, respectively. The 1H and 31P NMR data indicate that the bma ligand in cluster 2 is chelated to one of the ruthenium atoms that is bridged by the hydride and methylidyne ligands. Cluster 3 has been fully characterized in solution by IR and NMR spectroscopies, and the solid-state structure determined by X-ray crystallography. 3 crystallizes in the monoclinic space P21, a?=?12.1467(7)?Å, b?=?19.284(1)?Å, c?=?16.867(1)?Å, β?=?109.639(6)°, V?=?3721.0(4)?Å3, Z?=?4, and dcalcd?=?1.774?g?cm?3; R?=?0.0325, R w?=?0.0383 for 3518 reflections with I?>?3σ(I). The X-ray data confirm that one of the P–C(maleic anhydride) bonds of the bma ligand has been cleaved and that cluster 3 contains Ph2PH and μ-PPh2C=CC(O)OC(O) ligands, the latter which functions as a face-capping ligand to all three ruthenium atoms. Control experiments indicate that cluster 2 does not function as a precursor to cluster 3 under the employed reaction conditions.  相似文献   

20.
The Os3(-H)2(CO)7(-C6H4){3-Ph2PCH2P(C6H4)Ph} complex, which was isolated from the products of thermolysis of Os3(CO)10(-dppm) (dppm is Ph2PCH2PPh2) in toluene, was characterized by X-ray diffraction analysis. Protonation of the resulting complex with trifluoroacetic acid afforded the cationic complex [Os3(-H)3(CO)7(-C6H4){3-Ph2PCH2P(C6H4)Ph}]+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号