首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial copolymers bearing quaternary ammonium and phosphonium salts based on a copolymer of glycidyl methacrylate and 2‐hydroxyethyl methacrylate were synthesized. Poly(glycidyl methacrylate‐co‐2‐hydroxyethyl methacrylate) was modified for the introduction of chloromethyl groups by its reaction with chloroacetyl chloride. The chloroacetylated copolymer was modified for the production of quaternary ammonium or phosphonium salts. The antimicrobial activity of the obtained copolymers was studied against gram‐negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella sp., and Salmonella typhae), gram‐positive bacteria (Bacillus subtilus and B. cereus), and the fungus Trichophyton rubrum by the cut‐plug method. The results showed that the three copolymers had high antimicrobial activity. A control experiment was carried out on the main polymer without ammonium or phosphonium groups. The copolymer bearing quaternary salt made from tributyl phosphine was the most effective copolymer against both gram‐negative and gram‐positive bacteria and the fungus T. rubrum. The diameters of the inhibition zones ranged between 20 and 60 mm after 24 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2384–2393, 2002  相似文献   

2.
Long lasting antimicrobial activity and low toxicity are essentials for hydrogels in biomedicine. However, most reported hydrogels cannot combine these characteristics. In this work, poly (hexamethylene guanidine) hydrochloride (PHMG), a cheap cationic polymer with two terminal amino groups, was first modified with methacrylic anhydride to give PHMG dimethacrylamide (PHMGDMAAm), which was further used to prepare hydrogels with acrylamide (AAm) under ultraviolet irradiation in the presence of α‐ketoglutaric acid (α‐KGA) as photoinitiator in aqueous medium. The resultant hydrogels showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria due to the PHMG segments in the hydrogel backbone. Moreover, the antimicrobial activity of the hydrogels did not decrease significantly after being soaked in water for one month and washed by water frequently for many times. Hemolysis and cytotoxicity assays demonstrated the excellent biocompatibility of the PHMG‐PAAm hydrogels. This kind of low cost cationic hydrogels with long lasting antimicrobial activity and low toxicity is expected to have potential applications in biomedicine. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2027–2035  相似文献   

3.
We have successfully synthesized a series of redox‐degradable hyperbranched polyglycerols using a disulfide containing monomer, 2‐((2‐(oxiran‐2‐ylmethoxy)ethyl)disulfanyl) ethan‐1‐ol (SSG), to yield PSSG homopolymers and hyperbranched block copolymers, P(G‐b‐SSG) and P(SSG‐b‐G), containing nondegradable glycerol (G) monomers. Using these polymers, we have explored the structures of the hyperbranched block copolymers and their related degradation products. Furthermore, side reaction such as reduction of disulfide bond during the polymerization was investigated by employing the free thiol titration experiments. We elucidated the structures of the degradation products with respect to the architecture of the hyperbranched block copolymer under redox conditions using 1H NMR and GPC measurements. For example, the degradation products of P(G‐b‐SSG) and P(SSG‐b‐G) are clearly different, demonstrating the clear distinction between linear and hyperbranched block copolymers. We anticipate that this study will extend the structural diversity of PG based polymers and aid the understanding of the structures of degradable hyperbranched PG systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1752–1761  相似文献   

4.
A polyacrylonitrile (PAN) fiber was adopted for the backbone of a chelate polymer and poly(acrylo‐amidino ethylene amine) (PAEA) was prepared through a one‐step reaction between the PAN fiber and ethylenediamine (EDA). The maximum removal capacity and degree of substitution were 7.8 meq per gram of dried PAEA and 98%, respectively. The PAEA was tested as an adsorbent in single and two‐component metal aqueous solutions under changing pH. The Cu2+ ion accomplished maximum adsorption amount at pH 3 and the order of maximum adsorbed amounts on PAEA is Cu2+ > Ag+ > Zn2+ > Ni2+ > Pb2+ in molar basis. FT‐IR spectroscopy was employed to characterize the chemical bonding in metal aqueous solutions and surface morphology was examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Biodegradable poly(ester‐phosphoester)s bearing multiple chloroethyl groups were synthesized facilely by the ring‐opening copolymerization of 2‐(2‐chloroethoxy)‐2‐oxo‐1,3,2‐dioxaphospholane (CEP) and ε‐caprolactone (CL) in the presence of lanthanum tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s (La(DBMP)3) as single‐component catalyst under mild conditions. Then the quaternization reaction was carried out between the halide copolymers and a series of N,N‐dimethyl alkylamines to give poly(ester‐phosphoester)s containing ammonium groups with various charge density and alkyl chain length. The antibacterial properties of these cationic poly(esterphosphoester)s were evaluated by OD600 and zone of inhibition methods against gram‐negative (Escherichia coli) and gram‐positive (Staphylococcus aureus) bacteria. Cationic poly(esterphosphoester)s with long alkyl chain on the ammonium groups show excellent antibacterial activity for both gram‐negative and gram‐positive bacteria even with low charge density. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3667–3673  相似文献   

6.
The present work was aimed that the two Ruthenium compounds namely, [Ru(A)2(B)]Cl2, where A = 1,10‐phenanthroline; B = 2‐NO2‐phenyl thiosemicarbazone (Compound R1)/2‐OH‐phenyl thiosemicarbazone (Compound R2) have been tested for antibacterial activity at the concentrations of 1 mg/mL against various Gram‐Positive organisms (Lactobacillus, Staphylococcus pyrogenes, Bacillus subtilis, Staphylococcus aureus & Bacillus megatarium) and Gram‐Negative organisms (Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Enterobacter aerogenes, Salmonella paratyphi, Klebsiella pneumonia & Proteus mirabilis). The compounds were also tested for antifungal activity against Aspergillus clavatus, Aspergillus niger, Colletotrichum & Penicillium notatum by using agar diffusion assay and antimalarial activity against Plasmodium falciparum (Strain 3D7) using MTT assay. The results concluded that the compound R1 exhibited significant antibacterial activity than R2 against Gram‐Negative bacteria with zones of inhibition ranging from 15‐20 mm. and mild antibacterial activity against Gram‐Positive bacteria in comparison to tetracycline, streptomycin and rifampicin. These complexes were found to have moderate antifungal activity with no activity was however observed against Aspergillus niger. The compound, R1 exhibited antimalarial activity at 10 μg/mL, whereas R2 did not show antimalarial activity upto 50 μg/mL. Sensitivity to the compounds was greatest in the gram‐negative bacteria, followed by the gram‐positive bacteria and fungi.  相似文献   

7.
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30–70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70–150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.  相似文献   

8.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

9.
A reactive melamine derivative, 2‐amino‐4‐chloro‐6‐hydroxy‐s‐triazine (ACHT), was synthesized through the controlled hydrolysis of 2‐amino‐4,6‐dichloro‐s‐triazine. The reaction was characterized with Fourier transform infrared study and elemental analysis. ACHT could react with cotton cellulose at room temperature with a cold‐pad‐batch treatment process. Upon chlorination reactions, the amino group of covalently bound ACHT could be transformed into an N‐halamine structure, providing potent, durable, and rechargeable antimicrobial activities against both gram‐negative and gram‐positive bacteria. The chlorination mechanism and the structure–property relationship of the treated samples were further examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3818–3827, 2004  相似文献   

10.
Statistical and block all‐siloxane copolymers containing quaternary ammonium salt (QAS) groups with biocidal activity as lateral substituents were synthesized as models for the study of the effect of the arrangement of the QAS groups in the copolymer chain on their antimicrobial activity. The bioactive siloxane unit was [3‐n‐octyldimethylammoniopropyl]methylsiloxane, and the neutral unit was dimethylsiloxane. The copolymers also contained siloxane units with unreacted precursor 3‐chloropropyl or 3‐bromopropyl groups. A small number of units containing highly hydrophilic 3‐(3‐hydroxypropyl‐dimethylammonio)propyl groups were introduced to increase the solubility of the copolymers in water. The bioactive and bioneutral units were arranged in the polymer chain either in blocks or in statistical order. The block copolymers differed in the number and length of segments. The copolymers were obtained by the quaternization of tertiary amines by chloropropyl or bromopropyl groups attached to polysiloxane chains. The arrangement of the bioactive groups was controlled by the arrangement of the halogenopropyl groups in the bioactive copolymer precursor. All model siloxane copolymers showed high bactericidal activity in a water solution toward the gram‐negative bacteria Escherichia coli and the gram‐positive bacteria Staphylococcus aureus. However, no essential differences in the activities of the copolymers with block and statistical arrangements of units were detected. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2939–2948, 2003  相似文献   

11.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

12.
Hyperbranched poly(ether sulfone) was prepared in the presence of an oligomeric linear poly(ether sulfone) to generate multiblock hyperbranched‐linear (LxHB) copolymers. The LxHB copolymers were prepared in a two‐step, one‐pot synthesis by first polymerizing AB monomer to generate a linear block of a desired molecular weight followed by addition of the AB2 monomer in a large excess (19:1, AB2:AB) to generate the hyperbranched block. NMR integration analysis indicates that AB2:AB ratio is independent of the reaction time. Because the molecular weight still increases with reaction time, these results suggest that polymer growth continues after consumption of monomer by condensation into a multiblock architecture. The LxHB poly(ether sulfone)s have better thermal stability (10% mass loss > 343 vs. 317 °C) and lower Tg (200 vs. > 250 °C) than the hyperbranched homopolymer, higher Tg than the linear homopolymer (<154 °C), while little difference in the solubility character was observed between the two polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4785–4793, 2008  相似文献   

13.
A novel amine‐functionalized polycarbonate was synthesized and its excellent gene transfection ability in vitro is demonstrated. In the framework of adapting the cationic polycarbonate for in vivo gene delivery applications, here the design and synthesis of biodegradable block copolymers of poly(ethylene glycol) (PEG) and amine‐functionalized polycarbonate with a well‐defined molecular architecture and molecular weight is achieved by metal‐free organocatalytic ring‐opening polymerization. Copolymers in triblock cationic polycarbonate‐block‐PEG‐block‐cationic polycarbonate and diblock PEG‐block‐cationic polycarbonate configurations, in comparison with a non‐PEGylated cationic polycarbonate control, are investigated for their influence on key aspects of gene delivery. Among the polymers with similar molecular weights and N content, the triblock copolymer exhibit more favorable physicochemical (i.e., DNA binding, size, zeta‐potential, and in vitro stability) and biological (i.e., cellular uptake and luciferase reporter gene expression) properties. Importantly, the various cationic polycarbonate/DNA complexes are biocompatible, inducing minimal cytotoxicities and hemolysis. These results suggest that the triblock copolymer is a more useful architecture in future cationic polymer designs for successful systemic therapeutic applications.  相似文献   

14.
This work describes synthesis of antimicrobial methacrylate copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization and examines the versatility of this approach for improving chemical optimization to create potent, non‐toxic antimicrobial polymers. Specifically, this study focuses on the radical‐mediated transformation of end group of antimicrobial peptide‐mimetic polymer. RAFT polymerization using 2‐cyano‐2‐yl‐dithiobenzoate provided a statistical methacrylate copolymer consisting of aminobutyl and ethyl groups in the side chains. The following radical‐mediated modification using free radical initiators successfully transformed the ω‐end group of parent copolymer from dithiobenzoate to a cyanoisobutyl or aminoethyl cyanopentanoate group without any significant changes to the polymer molecular weight. In general, the parent polymer and variants showed a broad spectrum of activity against a panel of bacteria, but low hemolytic activity against human red blood cells. The parent copolymer with the dithiobenzoate end‐group showed highest antimicrobial and hemolytic activities as compared with other copolymers. The copolymers caused membrane depolarization in Staphylococcus aureus, while the ability of copolymers for membrane disruption is not dependent on the end‐group structures. The synthetic route reported in this study will be useful for further study of the role of polymer end‐groups in the antimicrobial activity of copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 304–312  相似文献   

15.
In this contribution, we reported the synthesis of a hyperbranched block copolymer composed of poly(ε‐caprolactone) (PCL) and polystyrene (PS) subchains. Toward this end, we first synthesized an α‐alkynyl‐ and ω,ω′‐diazido‐terminated PCL‐b‐(PS)2 macromonomer via the combination of ring‐opening polymerization and atom transfer radical polymerization. By the use of this AB2 macromonomer, the hyperbranched block copolymer (h‐[PCL‐b‐(PS)2]) was synthesized via a copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (i.e., click reaction) polymerization. The hyperbranched block copolymer was characterized by means of 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Both differential scanning calorimetry and atomic force microscopy showed that the hyperbranched block copolymer was microphase‐separated in bulk. While this hyperbranched block copolymer was incorporated into epoxy, the nanostructured thermosets were successfully obtained; the formation of the nanophases in epoxy followed reaction‐induced microphase separation mechanism as evidenced by atomic force microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 368–380  相似文献   

16.
Rotaxane‐type hyperbranched polymers are synthesized for the first time from A2B type semi‐rotaxane monomers formed in situ via complexation of bis(m‐phenylene)‐32‐crown‐10 dimethanol ( 1 ) and two paraquat ωn‐alkylenecarboxylic acid derivatives with tris(p‐t‐butylphenyl)methylphenylalkylene stoppers ( 8 and 9) . Rotaxane and taco complexes exist in solutions of the hyperbranched polyesters in CD3CN/CDCl3 as confirmed by NMR spectroscopy, but the taco complexes, which derive from non‐rotaxanated paraquat units, disappear in DMSO‐d6. NMR spectroscopy indicates the portion of rotaxanes strongly interlocked by the environment (inner rotaxanes) is larger in HP1?9 , which has longer alkylene spacers, perhaps indicating a higher degree of polymerization. The molecular size increases upon formation of the hyperbranched polymers are confirmed by dynamic light scattering and by viscometry. As with covalent hyperbranched polymers a number of potential applications exist; the unique mechanically linked character and the presence of uncomplexed host and guest moieties foreshadow the use of such systems for their responses to external stimuli with the added benefit of providing molecular recognition sites useful as delivery vehicles. Use of other host‐guest motifs to form the semirotaxane A2B monomers is possible and complementary systems with higher binding constants will enable efficient syntheses of high molecular weight, mechanically linked hyperbranched polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1647–1658  相似文献   

17.
In search for a new antibacterial agent with improved antimicrobial spectrum and potency, we designed and synthesized a series of novel 3‐((Z)‐2‐(5‐methyl‐1,2,4‐oxadiazol‐3‐yl)‐2‐(4‐nitrophenyl)vinyl)‐4H‐chromen‐4‐ones 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h by convergent synthesis approach. All the synthesized compounds were assayed for their in vitro antibacterial activities against gram‐negative and gram‐positive bacteria. The preliminary structure‐activity relationship to elucidate the essential structure requirements for the antimicrobial activity has been described. J. Heterocyclic Chem., (2011).  相似文献   

18.
Benzophenone‐containing, anhydride‐terminated hyperbranched poly(amic acid)s were end‐capped by ortho‐alkyl aniline in situ and then chemically imidized, yielding autophotosensitive hyperbranched polyimides. The polyimides were soluble in strong polar solvents, such as N‐methyl‐2‐pyrrolidone, N‐dimethylformamide, dimethylacetamide, and dimethyl sulfoxide. Thermogravimetric analysis revealed their excellent thermal stability, with a 5 wt % thermal loss temperature in the range of 527–548 °C and a10 wt % thermal loss temperature in the range of 562–583 °C. The strong absorption of the polyimide films in ultraviolet–visible spectra at 365 nm indicated that the hyperbranched polyimides were patternable. Highly resolved images with a line width of 6 μm were developed by ultraviolet exposure of the polymer films. A well‐defined image with lines as thin as 3 μm was also patterned, but the lines were rounded at the edges. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2026–2035, 2003  相似文献   

19.
2‐(2,4‐Dioxothiazolidin‐5‐yl)acetic acid 1 and its chloride derivative 2 were allowed to react with different aromatic amines such as o‐phenylenediamine, o‐aminothiophenol, p‐aminoacetophenone, and anthranilic acid to give the biologically active nuclei such as imidazoles, thiazoles, benzoxazines, and quinazolines incorporated with the thiazolidindione nucleus. The antimicrobial activity of five of the synthesized compounds was examined against one gram positive bacteria (Staphylococcus aureus), one gram negative bacteria (Escherichia coli), and two fungi (Aspergillus flavus and Candida albicans). Four compounds showed moderate antibacterial and antifungal activities.  相似文献   

20.
Microbial infections continually present a major worldwide public healthcare threat, particularly in instances of impaired wound healing and biomedical implant fouling. The development of new materials with the desired antimicrobial property to avoid and treat wound infection is urgently needed in wound care management. This study reports a novel dual‐functional biodegradable dextran‐poly(ethylene glycol) (PEG) hydrogel covalently conjugated with antibacterial Polymyxin B and Vancomycin (Vanco). The hydrogel is designed as a specialized wound dressing that eradicates existing bacteria and inhibits further bacteria growth, while, ameliorating the side effects of antibiotics and accelerating tissue repair and regeneration. The hydrogel exhibits potent antibacterial activities against both gram‐negative bacteria Escherichia coli (E. coli) and gram‐positive bacteria Staphylococcus aureus (S. aureus) with no observable toxicity to mouse fibroblast cell line NIH 3T3. These results demonstrate the immense potential of dextran‐PEG hydrogel as a wound dressing healthcare material in efficiently controlling bacteria growth in complex biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号