首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis, characterization, and solvent‐induced structure formation in thin films of an amphiphilic rod‐coil conjugated block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide). The diblock copolymers were prepared by a facile click reaction and their characterizations as well as thermal, crystalline, optical properties, and self‐assembly behavior have been investigated in detail. A series of morphologies including two‐phase separated nanostructure, nanofibrils, and their mixed morphology could be obtained depending on the selectivity of solvents to different blocks. Structural analyses demonstrate there is a subtle balance between microphase separation of copolymer and the π‐π stacking of the conjugated P3HT and such balance can be controlled by changing the solvents of different selectivity in solution and the length of P3HT block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
In this article, the synthesis of a series of conjugated rod–rod block copolymers based on poly(3‐hexylthiophene) (P3HT) and poly(phenyl isocyanide) (PPI) building blocks in a single pot is presented. Ni‐catalyzed Grignard metathesis polymerization of 2,5‐dibromo‐3‐hexylthiophene and subsequent addition of 4‐isocyanobenzoyl‐2‐aminoisobutyric acid decyl ester in the presence of Ni(dppp)Cl2 as a single catalyst afford P3HT‐b‐PPI with tunable molecular weights and compositions. In solid state, microphase separation occurred as differential scanning calorimetric analysis of P3HT‐b‐PPI revealed two glass transition temperatures. In solutions, the copolymers can self‐assemble into spherical aggregates with P3HT core and PPI shell in tetrahydrofuran and exhibit amorphous state in CHCl3. However, atomic force microscopy revealed that the block copolymers self‐assemble into nanofibrils on the substrate. These unique features warrant the resultant conjugated rod–rod copolymers' potential study in organic photovoltaic and other electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2939–2947  相似文献   

4.
Poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N‐isopropylacrylamide) (PNIPAAm‐b‐PEO‐b‐PNIPAAm) triblock copolymer was synthesized via the reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process with xanthate‐terminated poly(ethylene oxide) (PEO) as the macromolecular chain transfer agent. The successful synthesis of the ABA triblock copolymer inspired the preparation of poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide) (PNIPAAm‐b‐PEO) copolymer networks with N,N′‐methylenebisacrylamide as the crosslinking agent with the similar approach. With the RAFT/MADIX process, PEO chains were successfully blocked into poly(N‐isopropylacrylamide) (PNIPAAm) networks. The unique architecture of PNIPAAm‐b‐PEO networks allows investigating the effect of the blocked PEO chains on the deswelling and reswelling behavior of PNIPAAm hydrogels. It was found that with the inclusion of PEO chains into the PNIPAAm networks as midblocks, the swelling ratios of the hydrogels were significantly enhanced. Furthermore, the PNIPAAm‐b‐PEO hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The accelerated deswelling and reswelling behaviors have been interpreted based on the formation of PEO microdomains in the PNIPAAm networks, which could act as the hydrophilic tunnels to facilitate the diffusion of water molecules in the PNIPAAm networks. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

7.
Novel rod–coil–rod ABA triblock copolymers, poly(3‐hexylthiophene)‐block‐poly(ethylene)‐block‐poly(3‐hexylthiophene) (P3HT‐b‐PE‐b‐P3HT) were synthesized by using a combination of a Ru‐catalyzed ring‐opening metathesis polymerization of 1,4‐cyclooctadiene in the presence of a suitable chain transfer agent (CTA) and a Ni‐catalyzed Grignard metathesis polymerization of 5‐chloromagnesio‐2‐bromo‐3‐hexylthiophene followed by hydrogenation. Using this methodology, the molecular weights of the poly(butadiene) (PBD) or the P3HT blocks were controlled by adjusting the initial monomer/CTA or the initial monomer/macroinitiator ratio, respectively. In addition, the triblock structure was confirmed by selective oxidative degradation of the PBD block found in the intermediate P3HT‐b‐PBD‐b‐P3HT copolymer produced in the aforementioned method, followed by analysis of the degradation products. Thermal analysis and atomic force microscopy of P3HT‐b‐PE‐b‐P3HT revealed that the material underwent phase separation in the solid state, a feature which may prove useful for improving charge mobilities within electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3810–3817  相似文献   

8.
A well‐defined amphiphilic coil‐rod block copolymer, poly(2‐vinyl pyridine)‐b‐poly(n‐hexyl isocyanate) (P2VP‐b‐PHIC), was synthesized with quantitative yields by anionic polymerization. A low reactive one‐directional initiator, potassium diphenyl methane (DPM‐K), was very effective in polymerizing 2‐vinyl pyridine (2VP) without side reactions, leading to perfect control over molecular weight and molecular weight distribution over a broad range of initiator and monomer concentration. Copolymerization of 2VP with n‐hexyl isocyanate (HIC) was carried out in the presence of sodium tetraphenyl borate (NaBPh4) to prevent backbiting reactions during isocyanate polymerization. Terminating the living end with a suitable end‐capping agent resulted in a P2VP‐b‐PHIC coil‐rod block copolymer with controlled molecular weight and narrow molecular weight distribution. Cast film from a chloroform solution of P2VP‐b‐PHIC displayed microphase separation, characteristic of coil‐rod block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 607–615, 2005  相似文献   

9.
We report the synthesis, characterization, microphase separation, field‐effect charge transport, and photovoltaic properties of regioregular poly(3‐hexylthiophene)‐b‐poly(3‐cyclohexylthiophene) (P3HT‐b‐P3cHT). Two compositions of P3HT‐b‐P3cHT (HcH63 and HcH77) were synthesized with weight‐average molecular weights of 155,500 and 210,800 and polydispersity indices of 1.45 and 1.57, respectively. Solvent‐casted HcH77 was found to self‐assemble into nanowires with a width of 12.5 ± 0.9 nm and aspect ratios of 50–120, as observed by TEM imaging. HcH77 and HcH63 annealed 280 °C were observed by small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) to be microphase‐separated with characteristic length scales of 17.0–21.7 nm. The microphase‐separated domains were shown to be crystalline with interlayer backbone (100) d‐spacings of 1.69 and 1.40 nm, which correspond to the P3HT and P3cHT blocks, respectively. Field‐effect transistors fabricated from P3HT‐b‐P3cHT thin films showed a mobility of holes (0.0019 cm2/Vs) which is independent of thermal annealing. Bulk heterojunction solar cells based on HcH77/fullerene (PC71BM) blend thin films had a maximum power conversion efficiency of 2.45% under 100 mW/cm2 AM1.5 solar illumination in air. These results demonstrate that all‐conjugated block copolymers are suitable semiconductors for applications in field‐effect transistors and bulk heterojunction solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 614–626, 2010  相似文献   

10.
We have introduced a facile synthetic route for well‐defined A2B miktoarm star copolymer composed of regioregular poly(3‐hexylthiophene) and poly(methyl methacrylate) ((P3HT)2PMMA) by the combination of anionic polymerization and click reaction. First, we synthesized PMMA terminated with 1,3,5‐tris(bromomethyl)benzene (PMMA‐(Br)2) by anionic polymerization, and two bromines attached to the end of the PMMA chains were replaced by azides (PMMA‐(N3)2). Also, monoethynyl‐capped P3HT was synthesized by Grignard metathesis polymerization and post‐end functionalization. Then, copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition click reaction between monoethynyl‐capped P3HT and PMMA‐(N3)2 was performed to synthesize (P3HT)2PMMA. We used a slightly excess amount of monoethynyl‐capped P3HT so that all of the azide groups at the end of the PMMA chains completely reacted with monoethynyl‐capped P3HT. After complete removal of unreacted monoethynyl‐capped P3HT by column chromatography, pure (P3HT)2PMMA with narrow molecular weight distribution (the polydispersity of 1.18) was obtained. The weight fraction of P3HT and the total molecular weight of (P3HT)2PMMA are 0.48 and 16,000, respectively. To investigate the effect of the chain architecture on optical property and thin‐film morphology, we synthesized two linear P3HT‐b‐PMMAs (P3HT‐b‐PMMA‐L and P3HT‐b‐PMMA‐H) with similar weight fraction of P3HT block (0.48 for P3HT‐b‐PMMA‐L and 0.45 for P3HT‐b‐PMMA‐H) but two different total molecular weights (7900 for P3HT‐b‐PMMA‐L and 15,300 for P3HT‐b‐PMMA‐H). UV–visible (UV–vis) absorption spectrum and the fibril width of (P3HT)2PMMA thin film were similar to those of P3HT‐b‐PMMA‐L thin film. However, UV–vis spectrum for P3HT‐b‐PMMA‐H thin film was red‐shifted and the fibril width of P3HT‐b‐PMMA‐H was much larger than that of (P3HT)2PMMA. This indicates that the π–π interaction between P3HT arms in (P3HT)2PMMA is strong enough to arrange two P3HT backbone chains in (P3HT)2PMMA to stack one by one along the nanofibril axis. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

12.
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

13.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

14.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

15.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Dynamic phase transition and self‐assembly mechanism of thermosensitive poly(ethylene oxide)‐b‐poly(N‐vinylcaprolactam) (PEO‐b‐PVCL) copolymer are explored deeply. A gradual dehydration process with predominated hydrophobic interactions among copolymer chains in the phase transition process distinguishes the copolymer from homopolymer. PVCL in the inner zone is restricted and counter‐balanced by the PEO segments based on the sequence order of representative groups during the heating‐cooling cycles. Remarkably, PEO shell experiences unusual hydration process, which is first discovered. This hydrophilic shell plays as water absorption sponge layer and captures expelled water from PVCL core, accompanied by gradient distribution of water existed in the assembly structures. Peculiarly, pseudo‐linear changes of the integral area of free C?O are presented compared with inflection point in the hydrated C?O integral area, which propose that a part of hydrated C?O forms incomplete dehydrated states. During the cooling process, perfect reversibility is observed without obvious hysteresis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 385–396  相似文献   

17.
Poly(3‐hexylthiophene)‐b‐poly(γ‐benzyl‐L ‐glutamate) (P3HT‐b‐PBLG) rod–rod diblock copolymer was synthesized by a ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride using a benzylamine‐terminated regioregular P3HT macroinitiator. The opto‐electronic properties of the diblock copolymer have been investigated. The P3HT precursor and the P3HT‐b‐PBLG have similar UV–Vis spectra both in solution and solid state, indicating that the presence of PBLG block does not decrease the effective conjugation length of the semiconducting polythiophene segment. The copolymer displays solvatochromic behavior in THF/water mixtures. The morphology of the diblock copolymer depends upon the solvent used for film casting and annealing results in morphological changes for both films deposited from chloroform and trichlorobenzene.

  相似文献   


18.
Living ω‐aluminum alkoxide poly‐ϵ‐caprolactone and poly‐D,L ‐lactide chains were synthesized by the ring‐opening polymerization of ϵ‐caprolactone (ϵ‐CL) and D,L ‐lactide (D,L ‐LA), respectively, and were used as macroinitiators for glycolide (GA) polymerization in tetrahydrofuran at 40 °C. The P(CL‐b‐GA) and P(LA‐b‐GA) diblock copolymers that formed were fractionated by the use of a selective solvent for each block and were characterized by 1H NMR spectroscopy and differential scanning calorimetry analysis. The livingness of the operative coordination–insertion mechanism is responsible for the control of the copolyester composition, the length of the blocks, and, ultimately, the thermal behavior. Because of the inherent insolubility of the polyglycolide blocks, microphase separation occurs during the course of the sequential polymerization, resulting in a stable, colloidal, nonaqueous copolymer dispersion, as confirmed by photon correlation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 294–306, 2001  相似文献   

19.
Distinct stratified and non‐stratified morphologies were developed in poly(3‐hexylthiophene) (P3HT) and poly(ethylene glycol) (PEG)‐based homopolymer blends and diblock and triblock copolymer systems. By applying X‐ray photoelectron spectroscopy, only a double‐percolation mechanism including assembling of P3HT chains into the nanofibers in solution aging process with a marginal solvent like p‐xylene as well as crystallization of PEG phase in the cast thin films resulted in vertical stratification and networked fibrils. In cast thin films whose PEG phase, due to low molecular weight or being constrained between two rigid P3HT blocks in triblock copolymers was not crystallized, a non‐stratified discrete fibrillar morphology was acquired. Crystallization of PEGs in the thin films mainly participated in networking and expelling pre‐organized P3HT fibrils to the film surface. By performing the solution aging step in a good solvent such as o‐dichlorobenzene, the P3HTs remained in a coily‐like conformation, and casting the corresponding thin films reflected the non‐stratified discrete granular and featureless morphologies. Assembling the P3HT chains in the presence of PEG phase in cast films at most led to the low‐crystalline granules instead of highly crystalline nanofibrils. No significant crystallization in either homopolymer blends or block copolymer systems conduced to a featureless morphology with homogeneous distribution of existed materials. The surface morphology and ordering in various morphologies were studied employing atomic force microscopy, grazing incidence X‐ray diffraction, and ultraviolet–visible analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
We report the synthesis, micellar structures, and multifunctional sensory properties of new conjugated rod‐coil block copolymers, poly(3‐hexylthiophene)‐block‐poly(2‐(di methylamino)ethylmethacrylate)(P3HT‐b‐PDMAEMA). The new copolymers, synthesized by atom transfer radical polymerization of P3HT macroinitiator, consisted PDMAEMA coil lengths of 43, 65, and 124 repeating units. All the P3HT‐b‐PDMAEMA copolymers exhibit a similar low critical solution temperature in water around 33 °C. The micellar structures of the synthesized polymers were characterized by AFM, TEM, and dynamic light scattering, by varying temperature, pH, and water/THF composition. The micelles of P3HT20b‐PDMAEMA43 in water had a reversible size change from 75 ± 5 nm to 132 ± 5 nm on heating from 25 to 55 °C and reduced to the original size during cooling. In addition, the micellar size also showed a significant pH dependence, changing from 67 ± 8 nm (pH = 12) to 222 ± 6 nm (pH = 4), depending on the protonation of the PDMAEMA blocks and their electrostatic repulsion. The micellar structure of three P3HT‐b‐PDMAEMA copolymers changed from spheres, to vesicles, and finally to larger sphere micelles as the solvent composition varied from 0 to 100 wt % water in the mixed solvent. The different micellar structures of P3HT20b‐PDMAEMA43 solution led to a red‐shift on the absorption or photoluminescence spectra and exhibited the emission colors of yellow, orange, red, and dark red with increasing the water content. This study suggested that new copolymers had potential applications as multifunctional sensory materials toward temperature, pH, and solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号