首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
The “breath figures” method provides an efficient and cost‐effective method to produce highly ordered honeycomb patterns in polymeric films at micrometer and sub‐micrometer dimensions. The size and regularity of the pores can be adjusted through a series of physical and chemical parameters. In this study, amphiphilic diblock copolymers, polystyrene‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) with different lengths of P4VP, were synthesized through Reversible Addition‐Fragmentation Chain Transfer polymerization. The honeycomb‐patterned films were prepared from these well‐defined polymers through the dynamic breath figures method. A series of physical parameters including solution concentration, flow rate, humidity of the flow, and the humidity of the casting environment, were delicately adjusted to systematically investigate their effects on the morphology of the films. These studies identified four key factors which were found to influence the formation of the pattern. No obvious effect was found on the pore size by changing the length of P4VP block. The result provides clear direction on the fabrication of PS‐b‐P4VP honeycomb‐patterned films and more broadly contributes a deeper understanding of the processes involved in the formation of honeycomb patterns. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3721–3732  相似文献   

2.
Microstructured surfaces have great potentials to improve the performances and efficiency of optoelectronic devices. In this work, a simple robust approach based on surface instabilities was presented to fabricate poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) films with ridge‐like/wrinkled composite microstructures. Namely, the hierarchically patterned films were prepared by spin coating the P3HT/tetrahydrofuran (THF) solution on a polydimethylsiloxane (PDMS) substrate to form stable ridge‐like structures, followed by solvent vapor swelling to create surface wrinkles with the orientation guided by the ridge‐like structures. During spin coating of the P3HT/THF solution, the ridge‐like structures were generated by the in‐situ template of the THF swelling‐induced creasing structures on the PDMS substrate. To our knowledge, it is the first report that the creasing structures are used as a recoverable template for patterning films. The crease‐templated ridge‐like structures were well modulated by the THF swelling time, the modulus of the PDMS substrate, the P3HT/THF solution concentration and the selective/blanket exposure of the PDMS substrate to O2 plasma. UV–vis and fluorescence spectrometry measurements indicated that the light absorption and fluorescent emission were improved on the hierarchically patterned P3HT films, which can be utilized to enhance the efficiencies of organic solar cells. Furthermore, this simple versatile method based on the solvent swelling‐induced crease as the in‐situ recoverable template has been extended to pattern other spin‐coated films with different compositions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 928–939  相似文献   

3.
4‐Hydroxythiophenol (HTP) grafted poly(styrene‐b‐acrylic acid) (PS‐b‐PAA) block copolymers (BCPs) (PS‐b‐PAA‐g‐HTP) was synthesized using the esterification reaction between the carboxyl groups and hydroxyl groups. Self‐assembly behavior of the graft copolymer in 1,4‐dioxane/water was investigated. Assemblies of different morphologies, porous, and bowl‐shaped structures, could be easily prepared. A possible mechanism for the formation of the porous and bowl‐shaped structures was discussed. The present study showed a facile method for the preparation of functionalized PS‐b‐PAA BCPs, which could easily self‐assembly into novel structures in aqueous solution. These assemblies may be used to generate new functional materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1551–1557  相似文献   

4.
The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene‐block‐poly(1,3‐cyclohexadiene) (PS‐b‐PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ ?PS ≤ 0.91) was studied by transmission electron microscopy and small‐angle X‐ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD‐1,4)–shell(PCHD‐1,2) cylinders in PS matrix and three‐phase (PS, PCHD‐1,4, PCHD‐1,2) four‐layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS‐b‐PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1564–1572  相似文献   

5.
Aqueous solution properties of amphiphilic P(AA‐cotBA)‐b‐PPO‐b‐ P(AA‐cotBA) copolymers having various tBA contents are presented in this article. These copolymers show pH‐sensitive behavior depending on tBA/AA ratio. Hydrophobic interactions between tBA units leading to pH‐dependent macroscopic aggregates were evidenced by turbidimetry. The aggregation behavior of the PPO middle block was concealed in presence of tBA units. The formation of water‐soluble aggregated objects was characterized by Asymmetrical Flow Field Flow Fractionation (AsF4). By increasing tBA/AA ratio, we observed an increase of aggregates size as well as a reduction of the critical concentration aggregation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1944–1949  相似文献   

6.
The radical polymerization of 1‐vinylpyrrolidin‐2‐one (NVP) in poly(lactic‐co‐glycolic acid) (PLGA) 50:50 at 100 °C leads to amphiphilic PLGA‐g‐PVP copolymers. Their composition is determined by FT‐IR spectroscopy. Thermogravimetric analyses agree with FT‐IR determinations. Saponification of the PLGA‐g‐PVP polyester portion allows isolating the PVP side chains and measuring their molecular weight, from which the average chain transfer constant (CT) of the PLGA units is estimated. The MALDI‐TOF spectra of PVP reveal the presence at one chain end of residues of either glycolic acid‐ or lactic acid‐ or lactic/glycolic acid dimers, trimers and one tetramer, the other terminal being hydrogen. This unequivocally demonstrates that grafting occurred. Accordingly, the orthogonal solvent pair ethyl acetate—methanol, while separating the components of PLGA/PVP intimate mixtures, fails to separate pure PVP or PLGA from the reaction products. All PLGA‐g‐PVP and PLGA/PLGA‐g‐PVP blends, but not PLGA/PVP blends, give long‐time stable dispersions in water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1919–1928  相似文献   

7.
Polymers that possess lower critical solution temperature behavior such as poly(2‐alkyl‐2‐oxazoline)s (PAOx) are interesting for their application as stimulus‐responsive materials, for example in the biomedical field. In this work, we discuss the scalable and controlled synthesis of a library of pH‐ and temperature‐sensitive 2‐n‐propyl‐2‐oxazoline P(nPropOx) based copolymers containing amine and carboxylic acid functionalized side chains by cationic ring opening polymerization and postpolymerization functionalization strategies. Using turbidimetry, we found that the cloud point temperature (CP) is strongly dependent on both the polymer concentration and the polymer charge (as a function of pH). Furthermore, we observed that the CP decreased with increasing salt concentration, whereas the CP increased linearly with increasing amount of carboxylic acid groups. Finally, turbidimetry studies in PBS‐buffer indicate that CPs of these polymers are close to body temperature at biologically relevant polymer concentrations, which demonstrates the potential of P(nPropOx) as stimulus‐responsive polymeric systems in, for example, drug delivery applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1573–1582  相似文献   

8.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

9.
The radical copolymerization of chlorotrifluoroethylene (CTFE) with 3,3,4,4‐tetrafluoro‐4‐bromobut‐1‐ene (BTFB) initiated by tert‐butylperoxypivalate is presented. The microstructures of the obtained copolymers are determined by means of NMR spectroscopies and elemental analysis and show that random copolymers were obtained. A wide range of poly(CTFE‐co‐BTFB) copolymers is synthesized, containing from 17 to 89 mol % of CTFE. In all the cases, CTFE is the less reactive of both comonomers. Td10% values, ranging from 163 up to 359 °C, are dependent on the BTFB content. These variations of thermal property are attributed to the increase in the number of C‐H and C‐Br bonds breakdown when the BTFB molar percentage in the copolymer is higher. Tg values range from 19 to 39 °C and a decreasing trend is observed when increasing the amount of BTFB in the copolymer. This observation arises from the higher flexibility of the copolymer when increasing the number of fluorobrominated lateral chains. These original fluoropolymers bearing reactive pendant bromo groups are suitable candidates for various applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1714–1720  相似文献   

10.
Ratio‐controlled amino‐oxy functionalized, branched polyglycidols are prepared by a post‐polymerizaton modification using and optimizing the Mitsunobu reaction for this purpose. The hydroxyl side‐groups are functionalized with N‐hydroxy phthalimide and the hydrazinolysis of this group furnishes a new class of branched polyglycidols with pendant amino‐oxy groups. Reproducible functionalization degrees of 17, 33, 43, and 63% of the hydroxyl groups are obtained via the presented developed methodology. MTT assays demonstrate the biocompatibility of amino‐oxy functionalized materials. With this, the prepared structural motifs are valuable precursors for the synthesis of biomaterials, bioconjugates and hydrogels in which orthogonal strategies are desired. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2820–2825  相似文献   

11.
A photoinitiating system composed of a sensitizer (isopropylthioxanthone, ITX) and a photobase generator (triazabicyclodecene tetraphenylborate TBD.HBPh4) was successfully applied to the photopolymerization of a thiol‐isocyanate‐epoxy mixture. The final polymer network was considered in term of the compositional ratio between the thiol‐isocyanate and thiol‐epoxy coupling reactions. In parallel with structural investigation by spectroscopic technics, the relationships between the compositional ratio and kinetics of photopolymerization, thermomechanical properties and hardness were investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3119–3126  相似文献   

12.
The phase behavior of (PS‐PIB)2s‐PAA miktoarm star terpolymers with varying volume fractions of PAA was investigated directly by transmission electron microscopy, atomic force microscopy, and small‐angle X‐ray scattering, and indirectly by thermogravimetric analysis and degree of water sorption. The microdomains of (PS‐PIB)2s‐PAA demonstrate a unique and unexpected progression from highly ordered cylinders, to lower ordered spheres, to gyroid structures with increasing PAA content from 6.6 to 47 wt %. Interestingly, the phase behavior in the miktoarm star polymer system is significantly different from that reported previously for the linear counterpart of similar composition (PAA‐PS‐PIB‐PS‐PAA), where a steady progression from cylindrical to lamellar morphology was observed with increasing PAA content. At low PAA concentrations, the morphology is driven primarily by the relative solubility of the components, while at high PAA content the molecular architecture dominates. Thermal annealing demonstrated the thermodynamic stability of the morphologies, indicating the potential for design of novel microstructures for specific applications through precise control of architecture, composition, and interaction parameters of the components. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 916–925  相似文献   

13.
DNA‐directed assembly is a well developed approach in constructing desired nano‐architectures. On the other hand, E‐beam lithography is widely utilized for high resolution nano‐scale patterning. Recently, a new technique combining these two methods was developed to epitaxially grow DNA‐mediated nanoparticle superlattices on patterned substrates. However, defects are observed in epitaxial layers which restricts this technique from building large‐scale superlattices for real applications. Here we use molecular dynamics simulations to study and predict defect formation on adsorbed superlattice monolayers. We demonstrate that this epitaxial growth is energetically driven by maximizing DNA hybridization between the epitaxial layer and the substrate and that the shape anisotropy of the DNA‐mediated template posts leads to structural defects. We also develop design rules to dramatically reduce defects on epitaxial layers. Ultimately, with the assist of the computational study, this technique will open the door to constructing well‐ordered, three‐dimensional novel nanomaterials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1687–1692  相似文献   

14.
Since extraction of the naturally occurring mussel‐foot proteins is expensive and time‐consuming, routes towards synthetic analogues are continuously being explored. Often, these methods involve several protection and deprotection steps, making the synthesis of synthetic analogues time‐consuming and expensive as well. Herein, we show that UV‐initiated thiol‐ene coupling between a thiol‐functional dopamine derivative and an allyl‐functional aliphatic polycarbonate can be used as a fast and facile route to dopa‐functional materials. Different thiol‐to‐allyl ratios and irradiation protocols were used and it was found that nearly 50% of the allyl groups could be functionalized with dopa within short reaction times, without the need of protecting the catechol. It is also demonstrated herein that the dopa‐functional polymers can be used to form self‐healing gels through complexation with Fe3+ ions at increased pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2370–2378  相似文献   

15.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

16.
Two novel chiral well‐defined rhodium complexes, Rh(cod)(L‐Phe) (cod = 1,5‐cyclooctadiene, Phe = phenylalanine) and Rh(cod)(L‐Val) (Val = valine) were synthesized, isolated by recrystallization, and characterized. The helix‐sense‐selective polymerization (HSSP) of an achiral 3,4,5‐trisubstituted phenylacetylene, p‐dodecyloxy‐m,m‐dihydroxyphenylacetylene (DoDHPA) was examined by using the two Rh complexes as catalysts. These catalysts provided high molecular weight polymers (Mw 28 × 104?45 × 104) in about 40%–85% yields. The resulting polymers exhibited a bisignated CD signal at about 300 nm and a broad signal around 470 nm, indicating that they have preferential one‐handed helical structure. The present catalysts achieved larger molar ellipticity up to [θ]310 = 13.0 × 104 deg cm2/dmol than those with binary chiral catalytic systems, [Rh(cod)Cl]2/(L‐phenylalaninol), [Rh(cod)Cl]2/(L‐valinol), and [Rh(nbd)Cl]2/(R)‐PEA. All these results manifest that the present, well‐defined Rh complexes serve as excellent catalysts for the HSSP of DoDHPA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2346–2351  相似文献   

17.
Thin films (monolayer and bilayer) of cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) were shear aligned by the swelling and deswelling of a crosslinked PDMS pad that was physically adhered to the film during solvent vapor annealing. The nanostructures formed by self‐assembly were exposed to ultraviolet‐ozone to partially oxidize the PDMS, followed by calcination in air at 500 °C. In this process, the PS segments were fully decomposed, while the PDMS yielded silica nanostructures. The highly aligned PDMS cylinders were thus deposited as silica nanolines on the silicon substrate. Using a bilayer film, the center‐to‐center distance of these features were effectively halved from 38 to 19 nm. Similarly, by sequential shear‐alignment of two distinct layers, a rhombic array of silica nanolines was fabricated. This methodology provides a facile route to fabricating complex topographically patterned nanostructures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1058–1064  相似文献   

18.
Two new chiral (S,S)‐bis(oxazolinylphenyl)amine chromium dichloride complexes have been synthesized and structurally characterized. In combination with 2 equiv. of borate and an excess of AlR3, such Cr complexes serve as effective cationic initiators in the stereoregular carbocationic polymerization of 1,3‐dienes such as isoprene (IP) and myrcene (MY), affording cyclized cis‐1,4‐PIPs/PMys (cis‐1,4‐selectivity up to 96%) with cyclic sequence contents ranging from 26% to 87%. Moreover, these Cr initiator systems also exhibit an unprecedented control over sequence distribution of comonomers in the carbocationic copolymerization of IP and MY, preparing novel copolymers with different microstructures from mainly cyclized cis‐1,4‐specific statistical copolymers to cyclic olefin copolymers. The nature of Cr complex, borate, AlR3, temperature, molar ratio of comonomers has considerable effect on the (co)polymer's yield, stereoselectivity, cyclization, and comonomer sequence distribution. A plausible mechanism is suggested, which gives a new strategy for biomimetic synthesis of natural rubber. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1250–1259  相似文献   

19.
A fast, one pot, solvent‐free and metal‐free synthesis of poly‐ε‐caprolactone and poly(ethylene oxide) block copolymers is reported. Copolymers with different molar mass, different hydrophilic to lipophilic balance, high degree of conversion and narrow molar mass dispersity have been obtained by organocatalyzed ring opening polymerization of ε‐caprolactone in presence of mono‐ or diol‐poly(ethylene oxide) as initiator and fumaric acid as catalyst. A new biocompatible and environmental friendly purification method is presented, exploiting the upper critical solution temperature of these class of copolymers in ethanol. The phase diagrams of the synthesized copolymers in ethanol are also reported. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2992–2999  相似文献   

20.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号