首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We consider the single machine scheduling problem to minimize total completion time with fixed jobs, precedence constraints and release dates. There are some jobs that are already fixed in the schedule. The remaining jobs are free to be assigned to any free-time intervals on the machine in such a way that they do not overlap with the fixed jobs. Each free job has a release date, and the order of processing the free jobs is restricted by the given precedence constraints. The objective is to minimize the total completion time. This problem is strongly NP-hard. Approximability of this problem is studied in this paper. When the jobs are processed without preemption, we show that the problem has a linear-time n-approximation algorithm, but no pseudopolynomial-time (1 − δ)n-approximation algorithm exists even if all the release dates are zero, for any constant δ > 0, if P ≠ NP, where n is the number of jobs; for the case that the jobs have no precedence constraints and no release dates, we show that the problem has no pseudopolynomial-time (2 − δ)-approximation algorithm, for any constant δ > 0, if P ≠ NP, and for the weighted version, we show that the problem has no polynomial-time 2q(n)-approximation algorithm and no pseudopolynomial-time q(n)-approximation algorithm, where q(n) is any given polynomial of n. When preemption is allowed, we show that the problem with independent jobs can be solved in O(n log n) time with distinct release dates, but the weighted version is strongly NP-hard even with no release dates; the problems with weighted independent jobs or with jobs under precedence constraints are shown having polynomial-time n-approximation algorithms. We also establish the relationship of the approximability between the fixed job scheduling problem and the bin-packing problem.  相似文献   

2.
We consider a scheduling problem in which n independent and simultaneously available jobs are to be processed on a single machine. The jobs are delivered in batches and the delivery date of a batch equals the completion time of the last job in the batch. The delivery cost depends on the number of deliveries. The objective is to minimize the sum of the total weighted flow time and delivery cost. We first show that the problem is strongly NP-hard. Then we show that, if the number of batches is B, the problem remains strongly NP-hard when B ? U for a variable U ? 2 or B ? U for any constant U ? 2. For the case of B ? U, we present a dynamic programming algorithm that runs in pseudo-polynomial time for any constant U ? 2. Furthermore, optimal algorithms are provided for two special cases: (i) jobs have a linear precedence constraint, and (ii) jobs satisfy the agreeable ratio assumption, which is valid, for example, when all the weights or all the processing times are equal.  相似文献   

3.
We consider the two-machine no-wait open shop minimum makespan problem in which the determination of an optimal solution requires an optimal pairing of the jobs followed by the optimal sequencing of the job pairs. We show that the required enumeration can be curtailed by reducing the pair sequencing problem for a given pair set to a traveling salesman problem which is equivalent to a two-machine no-wait flow shop problem solvable in O(n log n) time. We then propose an optimal O(n log n) algorithm for the proportionate problem with equal machine speeds in which each job has the same processing time on both machines. We show that our O(n log n) algorithm also applies to the more general proportionate problem with equal machine speeds and machine-specific setup times. We also analyze the proportionate problem with unequal machine speeds and conclude that the required enumeration can be further curtailed (compared to the problem with arbitrary job processing times) by eliminating certain job pairs from consideration.  相似文献   

4.
5.
Saadani et al. [N.E.H. Saadani, P. Baptiste, M. Moalla, The simple F2∥Cmax with forbidden tasks in first or last position: A problem more complex that it seems, European Journal of Operational Research 161 (2005) 21–31] studied the classical n-job flow shop scheduling problem F2∥Cmax with an additional constraint that some jobs cannot be placed in the first or last position. There exists an optimal job sequence for this problem, in which at most one job in the first or last position is deferred from its position in Johnson’s [S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research Logistics Quarterly 1 (1954) 61–68] permutation. The problem was solved in O(n2) time by enumerating all candidate job sequences. We suggest a simple O(n) algorithm for this problem provided that Johnson’s permutation is given. Since Johnson’s permutation can be obtained in O(n log n) time, the problem in Saadani et al. (2005) can be solved in O(n log n) time as well.  相似文献   

6.
We consider the problem of scheduling a set of dependent jobs on a single machine with the maximum completion time criterion. The processing time of each job is variable and decreases linearly with respect to the starting time of the job. Applying a uniform approach based on the calculation of ratios of expressions that describe total processing times of chains of jobs, we show basic properties of the problem. On the basis of these properties, we prove that if precedence constraints among jobs are in the form of a set of chains, a tree, a forest or a series–parallel digraph, the problem can be solved in O(n log n) time, where n denotes the number of the jobs.  相似文献   

7.
We present on-line algorithms to minimize the makespan on a single batch processing machine. We consider a parallel batching machine that can process up to b jobs simultaneously. Jobs in the same batch complete at the same time. Such a model of a batch processing machine has been motivated by burn-in ovens in final testing stage of semiconductor manufacturing. We deal with the on-line scheduling problem when jobs arrive over time. We consider a set of independent jobs. Their number is not known in advance. Each job is available at its release date and its processing requirement is not known in advance. This general problem with infinite machine capacity is noted 1∣p − batch, rj, b = ∞∣Cmax. Deterministic algorithms that do not insert idle-times in the schedule cannot be better than 2-competitive and a simple rule based on LPT achieved this bound [Z. Liu, W. Yu, Scheduling one batch processor subject to job release dates, Discrete Applied Mathematics 105 (2000) 129–136]. If we are allowed to postpone start of jobs, the performance guarantee can be improved to 1.618. We provide a simpler proof of this best known lower bound for bounded and unbounded batch sizes. We then present deterministic algorithms that are best possible for the problem with unbounded batch size (i.e., b = ∞) and agreeable processing times (i.e., there cannot exist an on-line algorithm with a better performance guarantee). We then propose another algorithm that leads to a best possible algorithm for the general problem with unbounded batch size. This algorithm improves the best known on-line algorithm (i.e. [G. Zhang, X. Cai, C.K. Wong, On-line algorithms for minimizing makespan on batch processing machines, Naval Research Logistics 48 (2001) 241–258]) in the sense that it produces a shortest makespan while ensuring the same worst-case performance guarantee.  相似文献   

8.
Let G be a graph whose Laplacian eigenvalues are 0 = λ1 ? λ2 ? ? ? λn. We investigate the gap (expressed either as a difference or as a ratio) between the extremal non-trivial Laplacian eigenvalues of a connected graph (that is λn and λ2). This gap is closely related to the average density of cuts in a graph. We focus here on the problem of bounding the gap from below.  相似文献   

9.
We study how to efficiently schedule online perfectly malleable parallel jobs with arbitrary arrival times on m ? 2 processors. We take into account both the linear speedup of such jobs and their setup time, i.e., the time to create, dispatch, and destroy multiple processes. Specifically, we define the execution time of a job with length pj running on kj processors to be pj/kj + (kj − 1)c, where c > 0 is a constant setup time associated with each processor that is used to parallelize the computation. This formulation accurately models data parallelism in scientific computations and realistically asserts a relationship between job length and the maximum useful degree of parallelism. When the goal is to minimize makespan, we show that the online algorithm that simply assigns kj so that the execution time of each job is minimized and starts jobs as early as possible has competitive ratio 4(m − 1)/m for even m ? 2 and 4m/(m + 1) for odd m ? 3. This algorithm is much simpler than previous offline algorithms for scheduling malleable jobs that require more than a constant number of passes through the job list.  相似文献   

10.
The star graph is one of the most attractive interconnection networks. The cycle embedding problem is widely discussed in many networks, and edge fault tolerance is an important issue for networks since edge failures may occur when a network is put into use. In this paper, we investigate the cycle embedding problem in star graphs with conditional faulty edges. We show that there exist fault-free cycles of all even lengths from 6 to n! in any n-dimensional star graph Sn (n ? 4) with ?3n − 10 faulty edges in which each node is incident with at least two fault-free edges. Our result not only improves the previously best known result where the number of tolerable faulty edges is up to 2n − 7, but also extends the result that there exists a fault-free Hamiltonian cycle under the same condition.  相似文献   

11.
We study the problem of scheduling n non-preemptable jobs on a single machine which is not available for processing during a given time period. The objective is to minimize the sum of the job completion times. The best known approximation algorithm for this NP-hard problem has a relative worst-case error bound of 17.6%. We present a parametric O(nlog n)-algorithm H with which better worst-case error bounds can be obtained. The best error bound calculated for the algorithm in the paper is 7.4%. In a computational experiment, we test the algorithm with the performance guarantee set to 10.2%. It turns out that randomly generated instances with up to 1000 jobs can be solved with a mean (maximum) error of 0.31% (3.18%) and a mean (maximum) computation time of 0.8 (9.7) seconds.  相似文献   

12.
13.
We study the problem of maximizing the weighted number of just-in-time (JIT) jobs in a flow-shop scheduling system under four different scenarios. The first scenario is where the flow-shop includes only two machines and all the jobs have the same gain for being completed JIT. For this scenario, we provide an O(n3) time optimization algorithm which is faster than the best known algorithm in the literature. The second scenario is where the job processing times are machine-independent. For this scenario, the scheduling system is commonly referred to as a proportionate flow-shop. We show that in this case, the problem of maximizing the weighted number of JIT jobs is NP-hard in the ordinary sense for any arbitrary number of machines. Moreover, we provide a fully polynomial time approximation scheme (FPTAS) for its solution and a polynomial time algorithm to solve the special case for which all the jobs have the same gain for being completed JIT. The third scenario is where a set of identical jobs is to be produced for different customers. For this scenario, we provide an O(n3) time optimization algorithm which is independent of the number of machines. We also show that the time complexity can be reduced to O(n log n) if all the jobs have the same gain for being completed JIT. In the last scenario, we study the JIT scheduling problem on m machines with a no-wait restriction and provide an O(mn2) time optimization algorithm.  相似文献   

14.
The n-dimensional star graph Sn is an attractive alternative to the hypercube graph and is a bipartite graph with two partite sets of equal size. Let Fv and Fe be the sets of faulty vertices and faulty edges of Sn, respectively. We prove that Sn − Fv − Fe contains a fault-free cycle of every even length from 6 to n! − 2∣Fv∣ with ∣Fv∣ + ∣Fe∣ ? n − 3 for every n ? 4. We also show that Sn − Fv − Fe contains a fault-free path of length n! − 2∣Fv∣ − 1 (respectively, n! − 2∣Fv∣ − 2) between two arbitrary vertices of Sn in different partite sets (respectively, the same partite set) with ∣Fv∣ + ∣Fe∣ ? n − 3 for every n ? 4.  相似文献   

15.
In many situations, a worker’s ability improves as a result of repeating the same or similar tasks; this phenomenon is known as the learning effect. In this paper the learning effect is considered in a two-machine flowshop. The objective is to find a sequence that minimizes a weighted sum of total completion time and makespan. Total completion time and makespan are widely used performance measures in scheduling literature. To solve this scheduling problem, an integer programming model with n2 + 6n variables and 7n constraints where n is the number of jobs is formulated. Because of the lengthy computing time and high computing complexity of the integer programming model, the problem with up to 30 jobs can be solved. A heuristic algorithm and a tabu search based heuristic algorithm are presented to solve large size problems. Experimental results show that the proposed heuristic methods can solve this problem with up to 300 jobs rapidly. According to the best of our knowledge, no work exists on the bicriteria flowshop with a learning effect.  相似文献   

16.
This paper proves that the maximum order-index of n × n matrices over an arbitrary commutative incline equals (n − 1)2 + 1. This is an answer to an open problem “Compute the maximum order-index of a member of Mn(L)”, proposed by Cao, Kim and Roush in a monograph Incline Algebra and Applications, 1984, where Mn(L) is the set of all n × n matrices over an incline L.  相似文献   

17.
We propose an efficient approach to the problem of multi-degree reduction of rectangular Bézier patches, with prescribed boundary control points. We observe that the solution can be given in terms of constrained bivariate dual Bernstein polynomials. The complexity of the method is O(mn1n2) with m ? min(m1m2), where (n1n2) and (m1m2) is the degree of the input and output Bézier surface, respectively. If the approximation—with appropriate boundary constraints—is performed for each patch of several smoothly joined rectangular Bézier surfaces, the result is a composite surface of global Cr continuity with a prescribed r ? 0. In the detailed discussion, we restrict ourselves to r ∈ {0, 1}, which is the most important case in practical application. Some illustrative examples are given.  相似文献   

18.
Mosheiov and Sidney (2003) showed that the makespan minimization problem with job-dependent learning effects can be formulated as an assignment problem and solved in O(n3) time. We show that this problem can be solved in O(nlog n) time by sequencing the jobs according to the shortest processing time (SPT) order if we utilize the observation that the job-dependent learning rates are correlated with the level of sophistication of the jobs and assume that these rates are bounded from below. The optimality of the SPT sequence is also preserved when the job-dependent learning rates are inversely correlated with the level of sophistication of the jobs and bounded from above.  相似文献   

19.
We study determinant inequalities for certain Toeplitz-like matrices over C. For fixed n and N ? 1, let Q be the n × (n + N − 1) zero-one Toeplitz matrix with Qij = 1 for 0 ? j − i ? N − 1 and Qij = 0 otherwise. We prove that det(QQ) is the minimum of det(RR) over all complex matrices R with the same dimensions as Q satisfying ∣Rij∣ ? 1 whenever Qij = 1 and Rij = 0 otherwise. Although R has a Toeplitz-like band structure, it is not required to be actually Toeplitz. Our proof involves Alexandrov’s inequality for polarized determinants and its generalizations. This problem is motivated by Littlewood’s conjecture on the minimum 1-norm of N-term exponential sums on the unit circle. We also discuss polarized Bazin-Reiss-Picquet identities, some connections with k-tree enumeration, and analogous conjectured inequalities for the elementary symmetric functions of QQ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号