首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Data Envelopment Analysis (DEA) is basically a linear programming-based technique used for measuring the relative performance of organizational units, referred to as Decision Making Units (DMUs). The flexibility in selecting the weights in standard DEA models deters the comparison among DMUs on a common base. Moreover, these weights are not suitable to measure the preferences of a decision maker (DM). For dealing with the first difficulty, the concept of common weights was proposed in the DEA literature. But, none of the common weights approaches address the second difficulty. This paper proposes an alternative approach that we term as ‘preference common weights’, which is both practical and intellectually consistent with the DEA philosophy. To do this, we introduce a multiple objective linear programming model in which objective functions are input/output variables subject to the constraints similar to the equations that define production possibility set of standard DEA models. Then by using the Zionts–Wallenius method, we can generate common weights as the DM's underlying value structure about objective functions.  相似文献   

2.
Data envelopment analysis (DEA) measures the production performance of decision-making units (DMUs) which consume multiple inputs and produce multiple outputs. Although DEA has become a very popular method of performance measure, it still suffers from some shortcomings. For instance, one of its drawbacks is that multiple solutions exist in the linear programming solutions of efficient DMUs. The obtained weight set is just one of the many optimal weight sets that are available. Then why use this weight set instead of the others especially when this weight set is used for cross-evaluation? Another weakness of DEA is that extremely diverse or unusual values of some input or output weights might be obtained for DMUs under assessment. Zero input and output weights are not uncommon in DEA. The main objective of this paper is to develop a new methodology which applies discriminant analysis, super-efficiency DEA model and mixed-integer linear programming to choose suitable weight sets to be used in computing cross-evaluation. An advantage of this new method is that each obtained weight set can reflect the relative strengths of the efficient DMU under consideration. Moreover, the method also attempts to preserve the original classificatory result of DEA, and in addition this method produces much less zero weights than DEA in our computational results.  相似文献   

3.
It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current study develops a two-stage process for calculating super-efficiency scores regardless whether the standard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-efficiency scores that are identical to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields super-efficiency scores that characterize input savings and/or output surpluses. The current study also shows that infeasibility may imply that an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach is illustrated with numerical examples.  相似文献   

4.
Cross-efficiency evaluation is a commonly used approach for ranking decision-making units (DMUs) in data envelopment analysis (DEA). The weights used in the cross-efficiency evaluation may sometimes differ significantly among the inputs and outputs. This paper proposes some alternative DEA models to minimize the virtual disparity in the cross-efficiency evaluation. The proposed DEA models determine the input and output weights of each DMU in a neutral way without being aggressive or benevolent to the other DMUs. Numerical examples are tested to show the validity and effectiveness of the proposed DEA models and illustrate their significant role in reducing the number of zero weights.  相似文献   

5.
Efficiency is a relative measure because it can be measured within different ranges. The traditional data envelopment analysis (DEA) measures the efficiencies of decision-making units (DMUs) within the range of less than or equal to one. The corresponding efficiencies are referred to as the best relative efficiencies, which measure the best performances of DMUs and determine an efficiency frontier. If the efficiencies are measured within the range of greater than or equal to one, then the worst relative efficiencies can be used to measure the worst performances of DMUs and determine an inefficiency frontier. In this paper, the efficiencies of DMUs are measured within the range of an interval, whose upper bound is set to one and the lower bound is determined through introducing a virtual anti-ideal DMU, whose performance is definitely inferior to any DMUs. The efficiencies turn out to be all intervals and are thus referred to as interval efficiencies, which combine the best and the worst relative efficiencies in a reasonable manner to give an overall measurement and assessment of the performances of DMUs. The new DEA model with the upper and lower bounds on efficiencies is referred to as bounded DEA model, which can incorporate decision maker (DM) or assessor's preference information on input and output weights. A Hurwicz criterion approach is introduced and utilized to compare and rank the interval efficiencies of DMUs and a numerical example is examined using the proposed bounded DEA model to show its potential application and validity.  相似文献   

6.
Efficiency could be not only the ratio of weighted sum of outputs to that of inputs but also that of weighted sum of inputs to that of outputs. When the previous efficiency measures the best relative efficiency within the range of no more than one, the decision-making units (DMUs) who get the optimum value of one perform best among all the DMUs. If the previous efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform worst among all the DMUs. When the later efficiency is measured within the range of no more than one, the DMUs who get the optimum value of one perform worst among all the DMUs. If the later efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform best among all the DMUs. This paper mainly studies an interval DEA model with later efficiency, in which efficiency is measured within the range of an interval, whose upper bound is set to one and the lower bound is determined by introducing a virtual ideal DMU, whose performance is definitely superior to any DMUs. The efficiencies, obtained from interval DEA model, turn out to be all intervals and are referred to as interval efficiencies, which combine the best and the worst relative efficiency in a reasonable manner to give an overall assessment of performances for all DMUs. Assessor's preference information on input and output weights is also incorporated into interval DEA model reasonably and conveniently. Through an example, some differences are found from the ranking results obtained from interval DEA model and bounded DEA model using the Hurwicz criterion approach to rank the interval efficiencies.  相似文献   

7.
Data Envelopment Analysis DEA is a method for estimating (in-)efficiencies of Decision Making Units DMUs by means of weighted output - to input - ratios, being the weights optimal virtual prices of such ex-post activities for all units. The cross-efficiency matrix then evaluates these output - to input - relations with respect to all optimal price systems, and hence permits efficiency rankings for the DMUs by aggregating the matrix entries line - and/or columnwise. In this contribution the classical input oriented DEA approach is generalized twofold: its first aim is an optimal efficiency improving input allocation rather than a mere radial input reduction. The second aim is the choice of a peer-DMU, the price system of which is acceptable for the remaining units. As free input allocation permits substitutional effects and so rises productivities in view of possible peers and for all units, it supports such consensual choice. Numerical examples show the positive effects of the new concept.  相似文献   

8.
Data envelopment analysis (DEA) is designed to maximize the efficiency of a given decision-making unit (DMU) relative to all other DMUs by the choice of a set of input and output weights. One strength of the original models is the absence of any need of a priori information about the process of transforming inputs into outputs. However, in the practical application of DEA models, this strength has also become a weakness. Incorporation of process knowledge is more a norm than an exception in practice, and typically involves placing constraints on the input and/or output weights. New DEA formulations have evolved to address this issue. However, existing formulations for weight restrictions may underestimate relative efficiency or even render a problem infeasible. A new model formulation is introduced to address this issue. This formulation represents a significant improvement over existing DEA models by providing a generalized, comprehensive treatment for weight restrictions.  相似文献   

9.
Data envelopment analysis (DEA) is known to produce more than one efficient decision-making unit (DMU). This paper proposes a network-based approach for further increasing discrimination among these efficient DMUs. The approach treats the system under study as a directed and weighted network in which nodes represent DMUs and the direction and strength of the links represent the relative relationship among DMUs. In constructing the network, the observed node is set to point to its referent DMUs as suggested by DEA. The corresponding lambda values for these referent DMUs are taken as the strength of the network link. The network is weaved by not only the full input/output model, but also by models of all possible input/output combinations. Incorporating these models into the system basically introduces the merits of each DMU under various situations into the system and thus provides the key information for further discrimination. Once the network is constructed, the centrality concept commonly used in social network analysis—specifically, eigenvector centrality—is employed to rank the efficient DMUs. The network-based approach tends to rank high the DMUs that are not specialized and have balanced strengths.  相似文献   

10.
Data envelopment analysis (DEA) is the leading technique for measuring the relative efficiency of decision-making units (DMUs) on the basis of multiple inputs and multiple outputs. In this technique, the weights for inputs and outputs are estimated in the best advantage for each unit so as to maximize its relative efficiency. But, this flexibility in selecting the weights deters the comparison among DMUs on a common base. For dealing with this difficulty, Kao and Hung (2005) proposed a compromise solution approach for generating common weights under the DEA framework. The proposed multiple criteria decision-making (MCDM) model was derived from the original non-linear DEA model. This paper presents an improvement to Kao and Hung's approach by means of introducing an MCDM model which is derived from a new linear DEA model.  相似文献   

11.
Cross-efficiency evaluation in data envelopment analysis (DEA) has been developed under the assumption of constant returns to scale (CRS), and no valid attempts have been made to apply the cross-efficiency concept to the variable returns to scale (VRS) condition. This is due to the fact that negative VRS cross-efficiency arises for some decision-making units (DMUs). Since there exist many instances that require the use of the VRS DEA model, it is imperative to develop cross-efficiency measures under VRS. We show that negative VRS cross-efficiency is related to free production of outputs. We offer a geometric interpretation of the relationship between the CRS and VRS DEA models. We show that each DMU, via solving the VRS model, seeks an optimal bundle of weights with which its CRS-efficiency score, measured under a translated Cartesian coordinate system, is maximized. We propose that VRS cross-efficiency evaluation should be done via a series of CRS models under translated Cartesian coordinate systems. The current study offers a valid cross-efficiency approach under the assumption of VRS—one of the most common assumptions in performance evaluation done by DEA.  相似文献   

12.
Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of peer entities called decision-making units (DMUs), whose performance is determined based on multiple measures. The traditional DEA, which is based on the concept of efficiency frontier (output frontier), determines the best efficiency score that can be assigned to each DMU. Based on these scores, DMUs are classified into DEA-efficient (optimistic efficient) or DEA-non-efficient (optimistic non-efficient) units, and the DEA-efficient DMUs determine the efficiency frontier. There is a comparable approach which uses the concept of inefficiency frontier (input frontier) for determining the worst relative efficiency score that can be assigned to each DMU. DMUs on the inefficiency frontier are specified as DEA-inefficient or pessimistic inefficient, and those that do not lie on the inefficient frontier, are declared to be DEA-non-inefficient or pessimistic non-inefficient. In this paper, we argue that both relative efficiencies should be considered simultaneously, and any approach that considers only one of them will be biased. For measuring the overall performance of the DMUs, we propose to integrate both efficiencies in the form of an interval, and we call the proposed DEA models for efficiency measurement the bounded DEA models. In this way, the efficiency interval provides the decision maker with all the possible values of efficiency, which reflect various perspectives. A numerical example is presented to illustrate the application of the proposed DEA models.  相似文献   

13.
Input and output data, under uncertainty, must be taken into account as an essential part of data envelopment analysis (DEA) models in practice. Many researchers have dealt with this kind of problem using fuzzy approaches, DEA models with interval data or probabilistic models. This paper presents an approach to scenario-based robust optimization for conventional DEA models. To consider the uncertainty in DEA models, different scenarios are formulated with a specified probability for input and output data instead of using point estimates. The robust DEA model proposed is aimed at ranking decision-making units (DMUs) based on their sensitivity analysis within the given set of scenarios, considering both feasibility and optimality factors in the objective function. The model is based on the technique proposed by Mulvey et al. (1995) for solving stochastic optimization problems. The effect of DMUs on the product possibility set is calculated using the Monte Carlo method in order to extract weights for feasibility and optimality factors in the goal programming model. The approach proposed is illustrated and verified by a case study of an engineering company.  相似文献   

14.
Ranking efficiency based on data envelopment analysis (DEA) results can be used for grouping decision-making units (DMUs). The resulting group membership can be partly related to the environmental characteristics of DMU, which are not used either as input or output. Utilizing the expert knowledge on super efficiency DEA results, we propose a multinomial Dirichlet regression model, which can be used for the purpose of selection of new projects. A case study is presented in the context of ranking analysis of new information technology commercialization projects. It is expected that our proposed approach can complement the DEA ranking results with environmental factors and at the same time it facilitates the prediction of efficiency of new DMUs with only given environmental characteristics.  相似文献   

15.
DEA model with shared resources and efficiency decomposition   总被引:2,自引:0,他引:2  
Data envelopment analysis (DEA) has proved to be an excellent approach for measuring performance of decision making units (DMUs) that use multiple inputs to generate multiple outputs. In many real world scenarios, DMUs have a two-stage network process with shared input resources used in both stages of operations. For example, in hospital operations, some of the input resources such as equipment, personnel, and information technology are used in the first stage to generate medical record to track treatments, tests, drug dosages, and costs. The same set of resources used by first stage activities are used to generate the second-stage patient services. Patient services also use the services generated by the first stage operations of housekeeping, medical records, and laundry. These DMUs have not only inputs and outputs, but also intermediate measures that exist in-between the two-stage operations. The distinguishing characteristic is that some of the inputs to the first stage are shared by both the first and second stage, but some of the shared inputs cannot be conveniently split up and allocated to the operations of the two stages. Recognizing this distinction is critical for these types of DEA applications because measuring the efficiency of the production for first-stage outputs can be misleading and can understate the efficiency if DEA fails to consider that some of the inputs generate other second-stage outputs. The current paper develops a set of DEA models for measuring the performance of two-stage network processes with non splittable shared inputs. An additive efficiency decomposition for the two-stage network process is presented. The models are developed under the assumption of variable returns to scale (VRS), but can be readily applied under the assumption of constant returns to scale (CRS). An application is provided.  相似文献   

16.
In models of data envelopment analysis (DEA), an optimal set of input and output weights is generally assumed to represent the assessed decision making unit (DMU) in the best light in comparison to all the other DMUs. The paper shows that this may not be correct if absolute weight bounds or some other weight restrictions are added to the model. A consequence may be that the model will underestimate the relative efficiency of DMUs. The incorporation of weight restrictions in a maximin DEA model is suggested. This model can be further converted to more operational forms, which are similar to the classical DEA models.  相似文献   

17.
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. In this study, we provide a taxonomy and review of the fuzzy DEA methods. We present a classification scheme with four primary categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach and the possibility approach. We discuss each classification scheme and group the fuzzy DEA papers published in the literature over the past 20 years. To the best of our knowledge, this paper appears to be the only review and complete source of references on fuzzy DEA.  相似文献   

18.
It is important to consider the decision making unit (DMU)'s or decision maker's preference over the potential adjustments of various inputs and outputs when data envelopment analysis (DEA) is employed. On the basis of the so-called Russell measure, this paper develops some weighted non-radial CCR models by specifying a proper set of ‘preference weights’ that reflect the relative degree of desirability of the potential adjustments of current input or output levels. These input or output adjustments can be either less or greater than one; that is, the approach enables certain inputs actually to be increased, or certain outputs actually to be decreased. It is shown that the preference structure prescribes fixed weights (virtual multiplier bounds) or regions that invalidate some virtual multipliers and hence it generates preferred (efficient) input and output targets for each DMU. In addition to providing the preferred target, the approach gives a scalar efficiency score for each DMU to secure comparability. It is also shown how specific cases of our approach handle non-controllable factors in DEA and measure allocative and technical efficiency. Finally, the methodology is applied with the industrial performance of 14 open coastal cities and four special economic zones in 1991 in China. As applied here, the DEA/preference structure model refines the original DEA model's result and eliminates apparently efficient DMUs.  相似文献   

19.
Two novel methods named performance baseline and performance correspondence matrices are proposed to evaluate the performance of decision making units (DMUs) based on the techniques of singular value decomposition (SVD). The performance baseline matrix can be used to rank all the DMUs because it provides a common basis for performance comparison. The performance correspondence matrix can be used to conduct performance cluster analysis, with which to explore the structure of input/output variables that are associated with DMUs. The analysis can reveal the performance difference of the DMUs and the key input/output variables determining the efficiency of a certain DMU, and provides valuable quantitative information for adjusting variables to improve efficiency of the DMU. Three case studies are presented to demonstrate that the proposed methods in this work are effective and easy to use and can provide insights into proper selection of input/output variables for performance comparison to avoid over manipulating DEA models in practice.  相似文献   

20.
In conventional data envelopment analysis (DEA), measures are classified as either input or output. However, in some real cases there are variables which act as both input and output and are known as flexible measures. Most of the previous suggested models for determining the status of flexible measures are oriented. One important issue of these models is that unlike standard DEA, even under constant returns to scale the input- and output-oriented model may produce different efficiency scores. Also, can be expected a flexible measure is selected as an input variable in one model but an output variable in the other model. In addition, in all of the previous studies did not point to variable returns to scale (VRS), but the VRS assumption is prevailed on many real applications. To deal with these issues, this study proposes a new non-oriented model that not only selects the status of each flexible measure as an input or output but also determines returns to scale status. Then, the aggregate model and an extension with the negative data related to the proposed approach are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号