首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid-liquid extraction (LLE) has been widely used as a pre-treatment technique for separation and preconcentration of organic analytes from aqueous samples. Nevertheless, this technique has several drawbacks, mainly in the use of large volumes of solvents, making LLE an expensive, environmentally-unfriendly technique.Miniaturized methodologies [e.g., liquid-phase microextraction (LPME)] have arisen in the search for alternatives to conventional LLE, using negligible volumes of extracting solvents and reducing the number of steps in the procedure. Developments have led to different approaches to LPME, namely single-drop microextraction (SDME), hollow-fiber LPME (HF-LPME), dispersive liquid-liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME).This overview focuses on the application of these microextraction techniques to the analysis of emerging pollutants.  相似文献   

2.
Two liquid-phase microextraction procedures: single-drop microextraction (SDME) and dispersive liquid-liquid microextraction (DLLME), have been developed for the determination of several endocrine-disrupting phenols (EDPs) in seawaters, in combination with high-performance liquid chromatography (HPLC) with UV detection. The EDPs studied were bisphenol-A, 4-cumylphenol, 4-tertbutylphenol, 4-octylphenol and 4-n-nonylphenol. The optimized SDME method used 2.5 μL of decanol suspended at the tip of a micro-syringe immersed in 5 mL of seawater sample, and 60 min for the extraction time. The performance of the SDME is characterized for average relative recoveries of 102 ± 11%, precision values (RSD) < 9.4% (spiked level of 50 ng mL−1), and detection limits between 4 and 9 ng mL−1. The optimized DLLME method used 150 μL of a mixture acetonitrile:decanol (ratio 15.7, v/v), which is quickly added to 5 mL of seawater sample, then subjected to vortex during 4 min and centrifuged at 2000 rpm for another 5 min. The performance of the DLLME is characterized for average relative recoveries of 98.7 ± 3.7%, precision values (RSD) < 7.2% (spiked level of 20 ng mL−1), and detection limits between 0.2 and 1.6 ng mL−1. The efficiencies of both methods have also been compared with spiked real seawater samples. The DLLME method has shown to be a more efficient approach for the determination of EDPs in seawater matrices, presenting enrichment factors ranging from 123 to 275, average relative recoveries of 110 ± 11%, and precision values (RSD) < 14%, when using a real seawaters (spiked level of 3.5 ng mL−1).  相似文献   

3.
A new method involving headspace single-drop microextraction (SDME) and capillary electrophoresis (CE) is developed for the preconcentration and determination of ammonia (as dissolved NH3 and ammonium ion). An aqueous microdrop (5 μL) containing 1 mmol/L H3PO4 and 0.5 mmol/L KH2PO4 (as internal standard) was used as the acceptor phase. Common experimental parameters (sample and acceptor phase pH, extraction temperature, extraction time) affecting the extraction efficiency were investigated. Proposed SDME-CE method provided about 14-fold enrichment in about 20 min. The calibration curve was linear for concentrations of NH4+ in the range from 5 to 100 μmol/L (R2 = 0.996). The LOD (S / N = 3) was estimated to be 1.5 μmol/L of NH4+. Such detection sensitivity is high enough for ammonia determination in common environmental and biological samples. Finally, headspace SDME was applied to determine ammonia in human blood, seawater and milk samples with spiked recoveries in the range of 96-107%.  相似文献   

4.
During the past fifteen years since its introduction, single-drop microextraction has witnessed incessant growth in the range of applications of samples preparation for trace organic and inorganic analysis. This was mainly due to the array of modes that are available to accomplish extraction in harmony with the nature of analytes, and to use the extract directly for analysis by diverse instrumental methods. Whilst engineering of novel sorbent materials has expanded the sample capabilities of rival method of solid-phase microextraction, the single-drop microextraction – irrespective of the mode of extraction – uses common equipment found in analytical laboratories sans any modification, and in a much economic way. The recent innovations made in the field, as highlighted in this review article in the backdrop of historical developments, are due to the freedom in operational conditions and practicability to exploit chemical principals for optimum extraction and sensitive determination of analytes. Literature published till July 2011 has been covered.  相似文献   

5.
This overview covers current chemometric methodologies using second-order advantage to solve problems of analyzing highly complex matrices. Among the existing algorithms, it focuses on those most frequently used (e.g., the standard for second-order approaches to data analysis, PARAFAC (parallel factor analysis), and MCR-ALS (multivariate curve resolution alternating least squares), as well as the most recently implemented BLLS (bilinear least-squares), and U-PLS/RBL (unfolded partial least squares/residual bilinearization)). All of these are based on linear models. The overview also covers ANN/RBL (artificial neural networks followed by residual bilinearization), which achieves the second-order advantage in systems involving non-linear behavior. In addition, the overview deals with the drawbacks of these approaches, as well as other drawbacks that are inherent in the analytical techniques to question.  相似文献   

6.
建立了单滴液相微萃取(SDME)与气相色谱-质谱(GC-MS)联用技术快速检测水中的硝基咪唑类药物,对影响萃取的因素(溶剂的种类及用量、萃取时间、萃取温度及搅拌子的搅拌速度)进行优化。优化的萃取条件为:溶剂为2.5μL正辛醇,温度为50℃,搅拌速度为600 r/min,时间为20 min。萃取后,微液滴转移至衍生化试管,于70℃水浴中衍生45 min,进样分析。该方法在水中的线性范围为0.5~400μg/L,线性相关系数良好(r0.998),检测限为0.16~0.57μg/L。加标自来水和湖水中的相对平均回收率为80.9%~103.6%,相对标准偏差为1.7%~9.0%。  相似文献   

7.
The sample preparation step has been identified as the bottleneck of analytical methodology in chemical analysis. Therefore, there is need for the development of cost‐effective, easy to operate, and environmentally friendly miniaturized sample preparation technique. The microextraction techniques combine extraction, isolation, concentration, and introduction of analytes into analytical instrument, to a single and uninterrupted step, and improve sample throughput. The use of liquid‐phase microextraction techniques for the analysis of pesticide residues in fruits and vegetables are discussed with the focus on the methodologies employed by different researchers and their analytical performances. Analytes are extracted using water‐immiscible solvents and are desorbed into gas chromatography, liquid chromatography, or capillary electrophoresis for identification and quantitation.  相似文献   

8.
The present article offers a glance at achievements in single‐drop microextraction(SDME), with a focus on the two most commonly used modes of this technique: headspace and direct immersion. Factors affecting SDME, such as the pH and ionic strength of the sample solution, the stirring rate, and the extraction time are briefly summarized. The requirements for the acceptor phase and the influence of the sampling temperature are presented. In addition, the potential of the application of microwave and ultrasonic energy in SDME is also discussed. Examples of the application of the headspace and direct immersion modes of SDME are given in a table as additional Supporting Information.  相似文献   

9.
Headspace single-drop microextraction has been combined with microvolume UV-vis spectrophotometry for iodine determination. Matrix separation and preconcentration of iodide following in situ volatile iodine generation and extraction into a microdrop of N,N′-dimethylformamide is performed. An exhaustive characterization of the microextraction system and the experimental variables affecting iodine generation from iodide was carried out. The procedure employed consisted of exposing 2.5 μL of N,N′-dimethylformamide to the headspace of a 10 mL acidic (H2SO4 2 mol L−1) aqueous solution containing 1.7 mol L−1 Na2SO4 for 7 min. Addition of 1 mL of H2O2 1 mol L−1 for in situ iodine generation was performed. The limit of detection was determined as 0.69 μg L−1. The repeatability, expressed as relative standard deviation, was 4.7% (n = 6). The calibration working range was from 5 to 200 μg L−1 (r2 = 0.9991). The large preconcentration factor obtained, ca. 623 in only 7 min, compensate for the 10-fold loss in sensitivity caused by the decreased optical path, which results in improved detection limits as compared to spectrophotometric measurements carried out with conventional sample cells. The method was successfully applied to the determination of iodine in water, pharmaceutical and food samples.  相似文献   

10.
A rapid and simple single-drop microextraction method (SDME) has been used to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples with a complex matrix. Exposing two microlitre toluene drop to an aqueous sample contaminated with OCPs proved an excellent preconcentration method prior to analysis by gas chromatography-mass spectrometry (GC-MS). A Plackett-Burman design was used for screening and a central composite design for optimizing the significant variables in order to evaluate several possibly influential and/or interacting factors. The studied variables were drop volume, aqueous sample volume, agitation speed, ionic strength and extraction time. The optimum experimental conditions of the proposed SDME method were: 2 μL toluene microdrop exposed for 37 min to 10 mL of the aqueous sample containing 0% w/v NaCl and stirred at 380 rpm.The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9991 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5.9 and 9.9% (n = 8). The detection limits were in the range of 0.022-0.101 μg L−1 using GC-MS with selective ion monitoring. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA Method 625. Analysis of spiked effluent wastewater samples revealed that the matrix had no effect on extraction for eleven of the analytes but exerted notable effect for the other analytes.  相似文献   

11.
In this paper the most recent developments in the microextraction of polar analytes from aqueous environmental samples are critically reviewed. The particularities of different microextraction approaches, mainly solid-phase microextraction (SPME), stir-bar-sorptive extraction (SBSE), and liquid-phase microextraction (LPME), and their suitability for use in combination with chromatographic or electrically driven separation techniques for determination of polar species are discussed. The compatibility of microextraction techniques, especially SPME, with different derivatisation strategies enabling GC determination of polar analytes and improving their extractability is revised. In addition to the use of derivatisation reactions, the possibility of enhancing the yield of solid-phase microextraction methods for polar analytes by using new coatings and/or larger amounts of sorbent is also considered. Finally, attention is also focussed on describing the versatility of LPME in its different possible formats and its ability to improve selectivity in the extraction of polar analytes with acid-base properties by using separation membranes and buffer solutions, instead of organic solvents, as the acceptor solution.  相似文献   

12.
The multi-residue trace-level determination of six pesticides (diazinon, dimethoate, chlorpyrifos, vinclozolin, fenthion and quinalphos) in wine samples, after their single-drop microextraction (SDME) is presented herein. The extraction procedure was optimized using the multivariate optimization approach following a two-stage process. The first screening experimental design brought out the significant parameters and was followed by a central composite design (CCD) experiment, which revealed the simultaneous effect of the significant factors affecting the SDME process. High level of linearity for all target analytes was recorded with r2 ranging between 0.9978 and 0.9999 while repeatability (intra-day) and reproducibility (inter-day) varied from 5.6% to 7.4% and 4.9% to 12.5%, respectively. Limits of detection (LODs) and limits of quantification (LOQs) were found to range in the low μg L−1 level. In general, the developed methodology presented simplicity and enhanced sensitivity, rendering it appropriate for routine wine screening purposes.  相似文献   

13.
Room temperature ionic liquids can be considered as environmentally benign solvents with unique physicochemical properties. Ionic liquids can be used as extractant phases in SDME, being compatible with chromatographic systems. A single-drop microextraction method was developed for separation and preconcentration of mercury species (MeHg+, EtHg+, PhHg+ and Hg2+), which relies on the formation of the corresponding dithizonates and microextraction of these neutral chelates onto a microdrop of an ionic liquid. Afterwards, the separation and determination were carried out by high-performance liquid chromatography with a photodiode array detector. Variables affecting the formation and extraction of mercury dithizonates were optimized. The optimum conditions found were: microextraction time, 20 min; stirring rate, 900 rpm; pH, 11; ionic liquid type, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]); drop volume, 4 μL; and no sodium chloride addition. Limits of detection were between 1.0 and 22.8 μg L−1 for the four species of mercury, while the repeatability of the method, expressed as relative standard deviation, was between 3.7 and 11.6% (n = 8). The method was finally applied to the determination of mercury species in different water samples.  相似文献   

14.
In this article, a new method using single-drop microextraction (SDME) and gas chromatography micro-electron capture detection (GC-μECD) for the determination of chloroacetanilide herbicides (alachlor, acetochlor, metolachlor, pretilachlor and butachlor) residues was developed. The effects of SDME parameters such as extraction solvent, stirring rate, ionic strength, microdrop volume and extraction time were optimized. The optimum experimental conditions found were: 1.6 μl toluene microdrop, 5 ml water sample, 400 rpm stirring rate, 15 min extraction time and no salt addition. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The proposed method was proved to be a simple and rapid analytical procedure for chloroacetanilide herbicides in water with limits of detection 0.0002–0.114 μg/l. The relative recoveries range from 80% to 102% for all the target analytes, with the relative standard deviations varying from 3.9% to 11.7%.  相似文献   

15.
Li L  Hu B  Xia L  Jiang Z 《Talanta》2006,70(2):468-473
A method based on single-drop microextraction (SDME) combined with electrothermal vaporization (ETV)-ICP-MS was proposed for the determination of trace Cd and Pb. 8-Hydroxyquinoline (8-HQ) was employed as extractant dissolved in several microliters of chloroform and then an organic microdrop was formed at the tip of the microsyringe needle to extract the interest analytes. The vaporization behavior of the metal-8-HQ chelates in graphite furnace was investigated, and the ETV temperature program was optimized. The factors that influenced the extraction efficiency of target analytes (including pH value, flow rate of sample, extraction time and organic microdrop volume) were studied. Under the optimum conditions, the detection limits of the Cd and Pb were 4.6 and 2.9 pg mL−1 with the enrichment factor of 140-fold for Cd and 190-fold for Pb, respectively. The proposed method was applied successfully to the determination of trace Cd and Pb in environmental and biological samples. In order to validate the developed method, a certified reference material of GBW 08501 peach leaves was analyzed and the determined values obtained were in a good agreement with the certified values.  相似文献   

16.
In this article, we report a new method that involves headspace single-drop microextraction and ion chromatography for the preconcentration and determination of fluoride. The method lies in the in situ hydrogen fluoride generation and subsequent sequestration into an alkaline microdrop (15 μL) exposed to the headspace above the stirred aqueous sample. The NaF formed in the drop was then determined by ion chromatography. The influences of some crucial single-drop microextraction parameters such as the extraction temperature, extraction time, sample stirring speed, sulphuric acid concentration and ionic strength of the sample, on extraction efficiency were investigated. In the optimal condition, an enrichment factor of 97 was achieved in 15 min. The calibration working range was from 10 μg L−1 to 2000 μg L−1 (R2 = 0.998), and the limit of detection (signal to noise ratio of 3) was 3.8 μg L−1 of fluoride. Finally, the proposed method was successfully applied to the determination of fluoride in different milk samples. The recoveries of fluoride (at spiked concentrations of 200 μg L−1 and 600 μg L−1 into milk) in real samples ranged from 96.9% to 107.7%. Intra-day precision (N = 3) in terms of peak area, expressed as relative standard deviation, was found to be within the range of 0.24-1.02%.  相似文献   

17.
Fan Z 《Analytica chimica acta》2007,585(2):300-304
A simple and sensitive method for using electrothermal atomic absorption spectrometry (ET AAS) with Rh as permanent modifier determination of Sb(III) and total Sb after separation and preconcentration by N-benzoyl-N-phenylhydroxylamine (BPHA)-chloroform single drop has been developed. Parameters, such as pyrolysis and atomization temperature, solvent type, pH, BPHA concentration, extraction time, drop size, stirring rate and sample volume were investigated. Under the optimized experimental conditions, the detection limits (3σ) were 8.0 ng L−1 for Sb(III) and 9.2 ng L−1 for total Sb, respectively. The relative standard deviations (R.S.Ds.) were 6.6% for Sb(III) and 7.1% for total Sb (c = 0.2 ng mL−1, n = 7), respectively. The enrichment factor was 96. The developed method has been applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

18.
Approaches are described for on-line and off-line sample pretreatment of liquid samples utilising liquid- and adsorbent- and sorbent-phase microextraction methodologies with GC analysis. Solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), on-line solid-phase extraction (SPE), liquid-phase microextraction (LPME) and membrane-assisted methods are critically evaluated and the applicability of each technique is demonstrated with examples.  相似文献   

19.
In this work, we demonstrate the feasibility of applying headspace single-drop microextraction with in-drop precipitation for the quantitative determination of the acid labile sulfide fraction (H2S, HS, and S2− (free sulfide), amorphous FeS and some metal sulfide complexes-clusters as ZnS) in aqueous samples by microvolume turbidimetry. The methodology lies in the in situ hydrogen sulfide generation and subsequent sequestration into an alkaline microdrop containing ZnO22− and exposed to the headspace above the stirred aqueous sample. The ZnS formed in the drop was then determined by microvolume turbidimetry. The optimum experimental conditions of the proposed method were: 2 μL of a microdrop containing 750 mg L−1 Zn(II) in 1 mol L−1 NaOH exposed to the headspace of a 20-mL aqueous sample stirred at 1600 rpm during 80 s after derivatization with 1 mL of 6 mol L−1 HCl. An enrichment factor of 1710 was achieved in only 80 s. The calibration graph was linear in the range of 5-100 μg L−1 with a detection limit of 0.5 μg L−1. The repeatability, expressed as relative standard deviation, was 5.8% (N = 9). Finally, the proposed methodology was successfully applied to the determination of the acid labile sulfide fraction in different natural water samples.  相似文献   

20.
An ionic liquid-based single-drop microextraction (IL-SDME) procedure using IL as an extractant on-line coupled to capillary electrophoresis (CE) is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. For the SDME of three phenols, a 2.40 nL IL microdrop was exposed for 10 min to the aqueous sample and then was directly injected into the capillary column for analysis. Extraction parameters such as the extraction time, the IL single-drop volume, pH of the sample solution, ionic strength, volume of the sample solution and the extraction temperature were systematically investigated. Detection limits to three phenols were less than 0.05 μg mL−1, and their calibration curves were all linear (R2 ≥ 0.9994) in the range from 0.05 to 50 μg mL−1. And enrichment factors for three phenols were 156, 107 and 257 without agitation, respectively. This method was then utilized to analyze two real environmental samples from Yellow River and tap water, obtaining satisfactory results. Compared with the usual SDME for CE, IL-SDME–CE is a simple, low-cost, fast and environmentally friendly preconcentration technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号