首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Diimido complexes of the type Mo(NAr)2Cl2(dme) (dme = 1,2-dimethoxyethane) react with N-salicylidene-2-aminophenol (sapH2) in methanol in the presence of 2 equiv of triethylamine to form complexes with the general formula Mo(NAr)(1,2-OC6H4NH)(sap). The structures of three of these compounds (NAr = 2,6-dimethylphenylimido (1), 2,4,6-trimethylphenylimido (2), 2-tert-butylphenylimido3) have been determined by X-ray crystallography. The coordination sphere around the Mo is a distorted octahedron. The oxygen from the 2-aminophenol is trans to the imido nitrogen, whereas the amido nitrogen and the tridentate sap occupy the four equatorial positions. The Mo-N-C imido linkages have angles of 167.5(2) degrees (1), 163.2(2) degrees (2), and 162.4(1) degrees (3). A precursor complex to the imido-amido complex, Mo(NAr)(sap)(OCH3)2 (4, NAr = 2,4,6-trimethylphenylimido), has been isolated and characterized. Compound 4 reacts with 2-aminophenol to form 2, with 2-aminothiophenol to form Mo(NAr)(1,2-SC6H4NH)(sap) (5), with catechol to form Mo(NAr)(1,2-OC6H4O)(sap) (6), with naphthalene-2,3-diol to form Mo(NAr)(naphthalene-2,3-diolate)(sap) (7), with 1,2-benzenedithiol to form Mo(NAr)(1,2-SC6H4S)(sap) (8), and with 1,2-phenylenediamine to form Mo(NAr)(1,2-HNC6H4NH)(sap) (9). The structures of compounds 5-9 have been determined by X-ray crystallography. With the exception of compound 8, the structures are similar to those of 1,2, and 3, with the bidentate ligand occupying one axial and one equatorial position. In 8, 1,2-benzendithiolate occupies two equatorial positions, and the nitrogen from sap is located trans to the imido nitrogen. All complexes were characterized by 1H NMR spectroscopy, cyclic voltammetry, and UV-vis spectroscopy. When a solution of 4 is exposed to moisture-containing air, MoO2(sap)(CH3OH) (10) is formed. The structure of 10 was also determined.  相似文献   

2.
Wei ZH  Li HX  Zhang WH  Ren ZG  Zhang Y  Lang JP  Abrahams BF 《Inorganic chemistry》2008,47(22):10461-10468
Treatment of [Et 4N] 2[(edt) 2Mo 2S 2(mu-S) 2] ( 1) (edt = ethanedithiolate) with equimolar CuBr afforded an anionic hexanuclear cluster [Et 4N] 2[(edt) 2Mo 2(mu-S) 3(mu 3-S)Cu] 2.2CH 2Cl 2 ( 2.2CH 2Cl 2). On the other hand, reactions of 1 with 2 equiv of CuBr in the presence of 1,2-bis(diphenylphosphino)methane (dppm) and pyridine (Py) ligands gave rise to two neutral tetranuclear clusters [(edt) 2Mo 2O 2(mu-S) 2Cu 2(dppm) 2] ( 3) and [(edt) 2Mo 2O(mu 3-S)(mu-S) 2Cu 2(Py) 4] ( 4), respectively. The reaction of 1 with 2 equiv of CuBr followed by the addition of a mixture of dppm and Py (molar ratio = 1:2) yielded another neutral tetranuclear cluster [(edt) 2Mo 2(mu-S) 2(mu 3-S) 2Cu 2(dppm)(Py)].Py ( 5.Py). Compounds 2- 5 have been characterized by elemental analysis, UV-vis spectra, IR spectra, (1)H NMR, and X-ray analysis. The structure of the dianion of 2 can be viewed as having a [Mo 4S 8Cu 2] core in which two chemically equivalent [Mo 2(mu-S) 3(mu 3-S)(edt) 2Cu] (-) anions are linked by two extra Cu-S edt bonds. The molecular structure of 3 may be visualized as being built of one [(edt) 2Mo 2X 2(mu-S) 2] (2-) dianion and one [Cu 2(dppm) 2] (2+) dication that are connected by a pair of M-mu-S edt bonds. Compound 4 is formed by the affiliation of two Cu(I) atoms only at one end of the [(edt) 2Mo 2S 2(mu-S) 2] moiety, connecting with the S t atoms and the S edt atom. Cluster 5.Py can be viewed as being constructed from the addition of one Cu atom onto the incomplete cubanelike [Mo 2S 4Cu] framework through one terminal sulfur and one edt sulfur. Among the four clusters, 3 and 4 have internal mirror symmetry or pseudo mirror symmetry, respectively, while 2 and 5 are asymmetric clusters with racemic formation.  相似文献   

3.
The synthesis and structure of a novel beta-diketiminato Co(I) arene adduct [Me2NN]Co(eta6-toluene) (2) are described, that serves as a synthon to the reactive, "naked" 12-electron [Me2NN]Co fragment via loss of toluene in its reactions with dioxygen, organoazides, and a nitrosobenzene. Exposure of 2 to dioxygen in ether leads to {[Me2NN]Co}2(mu-O)2 (3), a rare example of a cobalt-oxo complex thermally stable at room temperature. The X-ray structure of 3 reveals a short Co-Co separation of 2.716(4) A and exhibits positional disorder for the bridging oxo groups; the predominant configuration contains oxygen atoms in square-planar sites with short Co-O distances (1.784(3) and 1.793(4) A). Reaction of 2 with organoazides N3R (R = 3,5-Me2C6H3 (Ar) or 1-adamantyl (Ad)) results in the formation of imido complexes whose structure depends on the nature of the azido substituent. The synthesis and structures of both {Me2NN]Co}2(mu-NAr)2 (4) with arylimido groups in tetrahedral bridging sites or the three-coordinate, 16-electron [Me2NN]CoNAd (5) are described. The X-ray structure of terminal imide 5 reveals a short Co-N bond distance (1.624(4) A) and only somewhat bent imido linkage (Co-N-C = 161.5(3) degrees ) consistent with a significant degree of multiple bond character. Complex 2 cleaves the O=N bond of the nitrosobenzene O=NAr (Ar = 3,5-Me2C6H3) to form the binuclear oxo-imido complex {[Me2NN]Co}2(mu-O)(mu-NAr) (6) that possesses a structure intermediate between square-planar 3 and tetrahedral 4 in which the [Me2NN]Co fragments are mutually orthogonal.  相似文献   

4.
The exploration of the NiX(2)/py(2)CO/Et(3)N (X = F, Cl, Br, I; py(2)CO = di-2-pyridyl ketone; Et(3)N = triethylamine) reaction system led to the tetranuclear [Ni(4)Cl(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Cl(2)·2Et(2)O (1·2Et(2)O) and [Ni(4)Br(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Br(2)·2Et(2)O (2·2Et(2)O) and the trinuclear [Ni(3){py(2)C(OMe)O}(4)]I(2)·2.5MeOH (3·2.6MeOH), [Ni(3){py(2)C(OMe)O}(4)](NO(3))(0.65)I(1.35)·2MeOH (4·2MeOH) and [Ni(3){py(2)C(OMe)O}(4)](SiF(6))(0.8)F(0.4)·3.5MeOH (5·3.5MeOH) aggregates. The presence of the intermediate size Cl(-) and Br(-) anions resulted in planar tetranuclear complexes with a dense hexagonal packing of cations and donor atoms (tetramolybdate topology) where the X(-) anions participate in the core acting as bridging ligands. The F(-) and I(-) anions do not favour the above arrangement resulting in triangular complexes with an isosceles topology. The magnetic properties of 1-3 have been studied by variable-temperature dc, variable-temperature and variable-field ac magnetic susceptibility techniques and magnetization measurements. All complexes are high-spin with ground states S = 4 for 1 and 2 and S = 3 for 3.  相似文献   

5.
Reaction of YI(3)(THF)(3.5) with one equivalent of the potassium beta-diketiminate (BDI) complex [HC{C(CH(3))NAr}(2)K] (Ar = 2,6-Pr(i)(2)C(6)H(3)) affords the monomeric, mono-substituted yttrium BDI complex [HC{C(CH(3))NAr}(2)YI(2)(THF)] in good yield. Reaction of with DME affords [HC{C(CH(3))NAr}(2)YI(2)(DME)] in quantitative yield, which is monomeric also. Reaction of the primary terphenyl phosphane Ar*PH(2) (Ar* = 2,6-(2,4,6-Pr(i)(3)C(6)H(2))(2)C(6)H(3)) with potassium hydride, and recrystallisation from hexane, affords the potassium primary terphenyl phosphanide complex [{Ar*P(H)K(THF)}(2)] in high yield. Compound is dimeric in the solid state, constructed around a centrosymmetric K(2)P(2) four-membered ring, the coordination sphere of potassium is supplemented with an eta(6) K[dot dot dot]C(aryl) interaction. The reaction of with one molar equivalent of in THF affords the THF ring-opened compound [HC{C(CH(3))NAr}(2)Y{O(CH(2))(4)P(H)Ar*}(I)(THF)]. Compound is formed as a mixture of endo(OR) and exo(OR) isomers (: = approximately 2 : 1) which may be separated by fractional crystallisation from hexane-toluene to give pure . Attempted alkylation of with two equivalents of KCH(2)Si(CH(3))(3) affords the potassium yttriate complex [Y{micro-eta(5):eta(1)-ArNC(CH(3))[double bond, length as m-dash]CHC([double bond, length as m-dash]CH(2))NAr}(2)K(DME)(2)] in moderate yield; contains two dianionic dianilide ligands, which are derived from C-H activation of a backbone methyl group, each bonded eta(5) to yttrium in the solid state. The reaction of with one equivalent of KC(8) affords [{HC(C[CH(3)]NAr)(2)YI(micro-OCH(3))}(2)], derived from C-O bond activation of DME, as the only isolable product in very low yield. Compounds , , , , , and have been characterised by single crystal X-ray diffraction, NMR spectroscopy and CHN microanalyses.  相似文献   

6.
The cis-dioxo-molybdenum(VI) complexes, [MoO2(L(H))2]2- (1b), [MoO2(L(S))(2)]2- (2b), and [MoO2(L(O))2]2- (3b) (L(H) = cyclohexene-1,2-dithiolate, L(S) = 2,3-dihydro-2H-thiopyran-4,5-dithiolate, and L(O) = 2,3-dihydro-2H-pyran-4,5-dithiolate), with new aliphatic dithiolene ligands were prepared and investigated by infrared (IR) and UV-vis spectroscopic and electrochemical methods. The mono-oxo-molybdenum(IV) complexes, [MoO(L(H))2]2- (1a), [MoO(L(S))2]2- (2a), and [MoO(L(O))2]2- (3a), were further characterized by X-ray crystal structural determinations. The IR and resonance Raman spectroscopic studies suggested that these cis-dioxo molybdenum(VI) complexes (1b-3b) had weaker Mo=O bonds than the common Mo(VI)O2 complexes. Complexes 1b-3b also exhibited strong absorption bands in the visible regions assigned as charge-transfer bands from the dithiolene ligands to the cis-MoO2 cores. Because the oxygen atoms of the cis-Mo(VI)O2 cores are relatively nucleophilic, these complexes were unstable in protic solvents and protonation might occur to produce Mo(VI)O(OH), as observed with the oxidized state of arsenite oxidase.  相似文献   

7.
Atom transfer reactions have been employed to convert Tp(i)(Pr)MoO(2)(OAr) into monomeric cis-oxosulfido-Mo(VI) and dimeric mu-disulfido-Mo(V) species, [Tp(i)(Pr)MoOS(OAr)](n)() (Tp(i)(Pr) = hydrotris(3-isopropylpyrazol-1-yl)borate; OAr = phenolate or naphtholate derivative; n = 1 and 2, respectively). Dark red, monomeric Tp(i)(Pr)MoOS(OAr) complexes contain distorted octahedral cis-oxosulfido-Mo(VI) centers, with d(Mo=O) = 1.692(5) A, d(Mo=S) = 2.132(2) A, and angle(O=Mo=S) = 103.68(16) degrees for the 2-sec-butylphenolate derivative. Dark red-purple, dimeric [Tp(i)(Pr)MoOS(OAr)](2) complexes undergo S-S bond cleavage forming monomeric oxosulfido-Mo(VI) species in solution. In the solid state, the 3,5-di-tert-butylphenolate derivative exhibits a centrosymmetric structure, with distorted octahedral anti oxo-Mo(V) centers bridged by a disulfido-kappaS,kappaS' ligand. Hydrolysis of the oxosulfido-Mo(VI) complexes results in the formation of [Tp(i)(Pr)MoO](2)(mu-S(2))(mu-O). In anaerobic solutions, certain oxosulfido-Mo(VI) complexes convert to molybdenyl complexes bearing bidentate 2-mercaptophenolate or related naphtholate ligands formed via intramolecular attack of the sulfido ligand on a coligand C-H group. The oxosulfido-Mo(VI) complexes serve as precursors to biologically relevant Mo(V) and heterobimetallic MoO(mu-S)Cu species and undergo a range of biomimetic reactions.  相似文献   

8.
Three new Mo(V) dithiolene compounds have been synthesized by addition of alkynes ((Me(3)Si)(2)C(2) (TMSA), (Me(3)Si)(2)C(4), and (Ph)(2)C(4) to MoO(2)S(2)(2-) in a MeOH/NH(3) mixture: [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(2))](2)(-) 1, [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(C(2)Ph))](2-) 2 (X = O or S), and [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(C(2)H))](2-) 3. The structure of 1 as determined by single-crystal X-ray diffraction study (space group Pbca, a = 13.3148(1) A, b = 15.7467(4) A, c = 28.4108(7) A, V = 5956.7(2) A(3)) is discussed. 2 and 3 have been identified by ESMS (electrospray mass spectrometry), (1)H NMR, (13)C NMR, and infrared spectroscopies. This investigation completes our previous study devoted to the addition of DPA (C(2)Ph(2)) to MoO(2)S(2)(2-) which led to [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(2))](2-) 4 (X = O or S). A reaction scheme is proposed to explain the formation of the different species present in solution. The reactivity of the remaining nucleophilic site of these complexes (eta(2)-S(2)) toward dicarbomethoxyacetylene (DMA) is also discussed.  相似文献   

9.
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer.  相似文献   

10.
Xia Y  Wei Y  Wang Y  Guo H 《Inorganic chemistry》2005,44(26):9823-9828
A kinetically controlled trans bifunctionalized organoimido derivative of hexamolybdate, (n-Bu(4)N)(2){trans-[Mo(6)O(17)(NAr)(2)]} (Ar = 2,6-dimethylphenyl) 1, in which the two 2,6-dimethylphenylimido groups are bonded to hexamolybdate at the trans positions, has been successfully synthesized in ca. 60% yield under mild reaction conditions. Its trans structure has been confirmed by a single-crystal X-ray diffraction study. In the crystals, cluster anions of 1 self-assemble into a 3D netlike structure via two different kinds of C-H...O hydrogen bondings, in which 1D supramolecular rectangular channels containing tetrabutylammonium cations form along the a axis. Compound 1 has also been characterized by (1)H NMR, IR, and UV-vis spectroscopic studies. UV-vis-near-IR reflectance spectroscopy measurements reveal the compound's nature of semiconductivity with an optical energy gap of 2.55 eV.  相似文献   

11.
Mono(dithiolene)sulfidomolybdenum(IV) complexes, [MoS(S4)(bdt)](2-) (2) and [MoS(S4)(bdtCl2)](2-) (3) (1,2-benzenedithiolate = bdt, 3,6-dichloro-1,2-benzenedithiolate = bdtCl2), were prepared by the substitution reaction of a tetrasulfido ligand in known [MoS(S4)2](2-) (1) with the corresponding dithiol. Complexes 2 and 3 were irreversibly oxidized to give bis(mu-sulfido) dimolybdenum(V) species, {[MoS(bdt)]2(mu-S)2}(2-) (4) and {[MoS(bdtCl2)]2(mu-S)2}(2-) (5), in aerobic acetonitrile. Mono(dithiolene)oxomolybdenum(IV) complexes, [MoO(S4)(bdt)](2-) (7) and [MoO(S4)(bdtCl2)](2-) (8), that are oxo derivatives of 2 and 3 were also synthesized from a known [MoO(S4)2](2-) (6) of an oxo derivative of 1 and the corresponding dithiol. Further, the electrophilic addition of dimethyl acetylenedicarboxylate to 7 gave [MoO(bdt)(S2C2(COOMe)2)](2-) (9), and ligand substitution of the tetrasulfido group of 7 with bdt and bdtCl2 yielded [MoO(bdt)2](2-) ( 10) and [MoO(bdt)(bdtCl2)](2-) (11), respectively. New sulfido/oxo molybdenum complexes were characterized by (1)H NMR, IR, ESI-MS, Raman, and UV-vis spectroscopies; cyclic voltammetry; and elemental analysis, and crystal structures of 2, 3, 5, 7, and 8 were determined by X-ray analysis.  相似文献   

12.
A facile method is described for the synthesis of cationic Re(VII) cis oxo imido complexes of the form [Re(O)(NAr)(salpd)+] (salpd = N,N'-propane-1,3-diylbis(salicylideneimine)), 4, [Re(O)(NAr)(saldach)+] (saldach = N,N'-cyclohexane-1,3-diylbis(salicylideneimine)), 5, and [Re(O)(NAr)(hoz)2+] (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline) (Ar = 2,4,6,-(Me)C(6)H(2); 4-(OMe)C(6)H(4); 4-(Me)C(6)H(4); 4-(CF3)C6H4; 4-MeC(6)H(4)SO(2)), 6, from the reaction of oxorhenium(V) [(L)Re(O)(Solv)+] (1-3) and aryl azides under ambient conditions. Unlike previously reported cationic Re(VII) dioxo complexes, these cationic oxo imido complexes can be obtained on a preparative scale, and an X-ray crystal structure of [Re(O)(NMes)(saldach)+], 5a, has been obtained. Despite the multiple stereoisomers that could arise from tetradentate ligation of salen ligands to rhenium, one major isomer is observed and isolated in each instant. The electronic rationalization for stereoselectivity is discussed. Investigation of the mechanism suggests that the reactions of Re(V) with aryl azides proceed through an azido adduct similar to the group 5 complexes of Bergman and Cummins. Treatment of the cationic oxo imido complexes with a reductant (PAr(3), PhSMe, or PhSH) results in oxygen atom transfer (OAT) and the formation of cationic Re(V) imido complexes. [(salpd)Re(NMes)(PPh(3))(+)] (7) and [(hoz)2Re(NAr)(PPh(3))(+)] (Ar = m-OMe phenyl) (9) have been isolated on a preparative scale and fully characterized including an X-ray single-crystal structure of 7. The kinetics of OAT, monitored by stopped-flow spectroscopy, has revealed rate saturation for substrate dependences. The different plateau values for different oxygen acceptors (Y) provide direct support for a previously suggested mechanism in which the reductant forms a prior-equilibrium adduct with the rhenium oxo (ReVII = O<--Y). The second-order rate constants of OAT, which span more than 3 orders of magnitude for a given substrate, are significantly affected by the electronics of the imido ancillary ligand with electron-withdrawing imidos being most effective. However, the rate constant for the most active oxo imido rhenium(VII) is 2 orders of magnitude slower than that observed for the known cationic dioxo Re(VII) [(hoz)2Re(O)(2)(+)].  相似文献   

13.
A tungsten neopentylidene complex has been found to decompose to yield a heterochiral dimer that contains a W=W double bond and no bridging ligands. Decompositions of related bisalkoxide complexes also yield compounds that contain an "unsupported" W=W double bond, while a sample of [Mo(NAr)(CH2-t-Bu)(OC6F5)]2 has been found to be a homochiral species related to [W(NAr)(CH2-t-Bu)(OC6F5)]2.  相似文献   

14.
15.
Takuma M  Ohki Y  Tatsumi K 《Inorganic chemistry》2005,44(17):6034-6043
The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo-Cu complex. In this paper, the synthesis and characterization of dinuclear Mo-Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (8-13) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.  相似文献   

16.
Structural analogues of the reduced (Mo(IV)) sites of members of the DMSO reductase family of molybdoenzymes are sought. These sites usually contain two pterin-dithiolene cofactor ligands and one protein-based ligand. Reaction of [Mo(MeCN)3(CO)3] and [Ni(S2C2R2)2] affords the trigonal prismatic complexes [Mo(CO)2(S2C2R2)2] (R = Me (1), Ph (2)), which by carbonyl substitution serve as useful precursors to a variety of bis(dithiolene)molybdenum-(IV,V) complexes. Reaction of 1 with Et4NOH yields [MoO(S2C2Me2)2]2- (3), which is readily oxidized to [MoO(S2C2Me2)2]1- (4). The hindered arene oxide ligands ArO- afford the square pyramidal complexes [Mo(OAr)(S2C2R2)2]1- (5, 6). The ligands PhQ- affordthe trigonal prismatic monocarbonyls [Mo(CO)(QPh)(S2C2Me2)2]1- (Q = S (8), Se (12)) while the bulky ligand ArS- forms square pyramidal [Mo(SAr)(S2C2R2)2]- (9, 10). In contrast, reactions with ArSe- result in [Mo(CO)(SeAr)(S2C2R2)2]1-(14, 15), which have not been successfully decarbonylated. Other compounds prepared by substitution reactions of 1 and 2 include the bridged dimers [Mo2(mu-Q)2(S2C2Me2)4]2- (Q = S (7), Se (11)) and [Mo2(mu-SePh)2(S2C2Ph2)4]2- (13). The complexes 1, 3-5, 7-10, 12-14, [Mo(S2C2Me2)3] (16), and [Mo(S2C2Me2)3]1- (17) were characterized by X-ray structure determinations. Certain complexes approach the binding arrangements in at least one DMSO reductase (5/6) and its Ser/Cys mutant, and in dissimilatory nitrate reductases (9/10). This investigation provides the initial demonstration of the new types of bis(dithiolene)molybdenum(IV) complexes available through [Mo(CO)2(S2C2R2)2] precursors, some of which will be utilized in reactivity studies. (Ar = 2,6-diisopropylphenyl or 2,4,6-triisopropylphenyl.)  相似文献   

17.
As part of our interest in the design and reactivity of P,O ligands, and because the insertion chemistry of small molecules into a metal alkyl bond is very dependent on the ancillary ligands, the behavior of Pt-methyl complexes containing the beta-phosphonato-phosphine ligand rac-Ph2PCH(Ph)P(O)(OEt)2 (abbreviated PPO in the following) toward CO insertion has been explored. New, mononuclear Pt(II) complexes containing one or two PPO ligands, [PtClMe(kappa2-PPO)] (1), [Pt{C(O)Me}Cl(kappa2-PPO)] (2), [PtMe(CO)(kappa2-PPO)]OTf (3 x OTf), [PtMe(OTf)(kappa2-PPO)] (4), trans-[PtClMe(kappa1-PPO)2] (5), [PtMe(kappa2-PPO)(kappa1-PPO)]BF4 (6 x BF4), [PtMe(kappa2-PPO)(kappa1-PPO)]OTf (6 x OTf), and [Pt{C(O)Me}(kappa2-PPO)(kappa1-PPO)]BF4 (7 x BF4) have been prepared and characterized. Hemilability of the ligands is observed in the cations 6 and 7 in which the terminally bound and chelating PPO ligands exchange their role on the NMR time-scale. The acetyl complexes 2 and 7 are stable in solution, but the former deinserts CO upon chloride abstraction. We also demonstrate the ability of PPO to behave as an assembling ligand and to stabilize a heterometallic Pt-Ag metal complex, [PtMe(kappa2-PPO){mu-(eta1-P;eta1-O)PPO)}Ag(OTf)(Pt-Ag)]OTf (8 x OTf), which was obtained by reaction of 5 with AgOTf to generate more reactive, cationic complexes. Whereas the first equivalent of AgOTf abstracted the chloride ligand, the second equivalent added to the cationic complex with formation of a Pt-Ag bond (2.819(1) A). The complexes 1, 2, 4, 5 x CH2Cl2, and (8 x OTf)2 have been structurally characterized by single-crystal X-ray diffraction. The latter has a dimeric nature in the solid state, with two silver-bound triflates acting as bridging ligands between two Pt-Ag moieties. In addition to the Ag-Pt bond, the Ag+ cation is stabilized by a dative O -->Ag interaction involving one of the PPO ligands.  相似文献   

18.
The reaction of Ni(dppe)Cl2 and syn-[DmpGe(SLi)(mu-S)2Ge(SLi)Dmp] prepared in situ from syn-[DmpGe(SH)(mu-S)2Ge(SH)Dmp] (1) and n-BuLi (2 equiv) afforded the Ge2NiS4 cluster, [DmpGe(mu-S)]2(mu-S)2Ni(dppe) (2) (Dmp = 2,6-dimesitylphenyl). The nickel in 2 assumes a slightly distorted square planar geometry. However, another Ge2NiS4 cluster, [DmpGe(mu-S)]2(mu-S)2Ni(PPh3)2 (3) obtained from a similar reaction with Ni(PPh3)2Cl2, contains the nickel in a tetrahedron. When 3 was heated to 120 degrees C in toluene, a novel Ge4Ni6S12 cluster [DmpGe(mu-S)3]4Ni6 (5) was obtained. In cluster 5, six nickels form an octahedron with the nickels occupying its vertexes, and four DmpGeS3 units cap half of the trigonal faces.  相似文献   

19.
Stepwise addition of one equivalent of n-butyllithium and trimethylsilyl chloride to 2-tert-butylmercaptoaniline affords the new ligand 1-(Me3SiNH)-2-(t-BuS)C6H4 (LH), that reacts with one equivalent of butyllithium to its lithium salt LLi. Dioxodichloromolybdenum [MoO2Cl2] and dioxodichlorotungsten dimethoxyethane [WO2Cl2(dme)] react in tetrahydrofuran solution at low temperature with two equivalents LLi to monomeric dioxomolybdenum(VI) [MoO2L2] (1) and dioxotungsten(VI) complex [WO2L2] (2) employing two bidentate amido thioether ligands. The crystallographic determination of the molecular structures of 1 and 2 show evidence for M...S contacts. The reaction of [MoO2Cl2] with LLi in tetrahydrofuran solution at room temperature leads next to 1 to two compounds where silyl group migration from nitrogen to oxygen atoms occurs forming [Mo(=NL')2(OSiMe)2] (3) and [Mo(=NL')2(OSiMe3)L] (4, L' = N-2-t-BuSC6H4) as determined by NMR spectroscopy. Compound 4 was isolated in low yield and its molecular structure determined by X-ray crystallography. Higher yields of a bisimido complex can be obtained by the direct reaction of one equivalent of LLi with [Mo(NAr)2Cl2(dme)] (Ar = 2,6-Me2C6H4) forming [Mo(NAr)2LCl] (5).  相似文献   

20.
Density functional theory calculations have been carried out to investigate 12-electron reduced alpha, beta, gamma, delta, and epsilon Keggin-like [(MoO4)Mo12O12S12(OH)12]2- polyoxothiometalates (POTMs), which show that the stability order is alpha < beta < gamma < delta < epsilon that is perfectly inverse to the well-known trend of the classical Keggin polyoxometalates. Energy decomposition analysis reveals that the enhanced stabilities of gamma, delta, and epsilon isomers originate the favorable arrangements of their Mo12O12S12(OH)12 shell, in which the edge-sharing [MoV2(mu-S)2O2] fragment plays a fundamental role in stabilizing the overall structure. Both frontier orbital analysis and Mayer indexes exhibit that a Mo-Mo single bond is formed inside the [MoV2(mu-S)2O2] fragment, which leads to the localization of the two reduced electrons. As compared with experimentally discovered cyclic [(C9H3O6)@Mo12O12S12(OH)12]3-, all Keggin POTM structures are less stable due to their disfavored cage framework and the disadvantageous host-guest interaction. However, the epsilon-type Keggin POTM that has the largest similarity to the cyclic species is possibly available in the presence of appropriate templates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号