首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Hayat  T.  Hameed  M. I.  Asghar  S.  Siddiqui  A. M. 《Meccanica》2004,39(4):345-355
The exact analytic solutions of two problems of a second order fluid in presence of a uniform transverse magnetic field are investigated. The governing equation is of fourth order ordinary differential equation and is solved using perturbation method. In the first problem we discuss the flow of a second order fluid due to non-coaxial rotations of a porous disk and a fluid at infinity. In second problem the flow of a second order conducting fluid between two infinite plates rotating about the same axis is investigated, with suction or blowing along the axial direction. For second order conducting fluid it is observed that asymptotic solution exists for the velocity both in the case of suction and blowing.  相似文献   

2.
Roy  S.  Takhar  H.S.  Nath  G. 《Meccanica》2004,39(3):271-283
Unsteady flow over an infinite permeable rotating cone in a rotating fluid in the presence of an applied magnetic field has been investigated. The unsteadiness is induced by the time-dependent angular velocity of the body, as well as that of the fluid. The partial differential equations governing the flow have been solved numerically by using an implicit finite-difference scheme in combination with the quasi-linearization technique. For large values of the magnetic parameter, analytical solutions have also been obtained for the steady-state case. It is observed that the magnetic field, surface velocity, and suction and injection strongly affect the local skin friction coefficients in the tangential and azimuthal directions. The local skin friction coefficients increase when the angular velocity of the fluid or body increases with time, but these decrease with decreasing angular velocity. The skin friction coefficients in the tangential and azimuthal directions vanish when the angular velocities of fluid and the body are equal but this does not imply separation. When the angular velocity of the fluid is greater than that of the body, the velocity profiles reach their asymptotic values at the edge of the boundary layer in an oscillatory manner, but the magnetic field or suction reduces or suppresses these oscillations.  相似文献   

3.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions with suction and injection through the surface included. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the exact velocity equations obtained. Making use of this solution, analytical formulas corresponding to the permeable wall shear stresses are extracted.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. As a result, exact formulas are obtained for the temperature field which take different forms depending on whether suction or injection is imposed on the wall. The impacts of several quantities are investigated on the resulting temperature field. In accordance with the Fourier‘s heat law, a constant heat transfer from the porous disk to the fluid takes place. Although the influence of dissipation varies, suction enhances the heat transfer rate as opposed to the injection.  相似文献   

4.
Numerical self-similar solutions are reported for the laminar, incompressible flow between a rotating disk and a porous, fixed one with suction. Validation of the method is obtained through the numerical integration of the full Navier-Stokes equations applied to a reference radially confined geometry, and also with hot-wire measurements of the tangential velocity component. The flow structure is analysed for different values of the rotational and suction Reynolds numbers. It is shown that suction causes an important angular acceleration of the rotating core, whose velocity may thus considerably exceed that of the rotating disk. The physical reason for this unusual behavior is discussed in detail.  相似文献   

5.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow due to a porous disk rotating with a constant angular speed.The three-dimensional hydromagnetic equations of motion are treated analytically to obtained exact solutions with the inclusion of suction and injection.The well-known thinning/thickening flow field effect of the suction/injection is better understood from the constructed closed form velocity equations.Making use of this solution,analytical formulas for the angular velocity components as well as for the permeable wall shear stresses are derived.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation.The temperature field is shown to accord with the dissipation and the Joule heating.As a result,exact formulas are obtained for the temperature field which take different forms corresponding to the condition of suction or injection imposed on the wall.  相似文献   

6.
Hayat  T.  Asghar  S.  Siddiqui  A.M. 《Meccanica》1999,34(4):259-265
An exact analytic solution of the unsteady Navier–Stokes equations is obtained for the flow caused by the non-coaxial rotations of a porous disk and a fluid at infinity. The porous disk is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous disk is also discussed. Further, it is shown that a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. In addition, the flow due to porous oscillating disk and a fluid at infinity rotating about an axis parallel to the z-axis is attempted as a second problem. Sommario. Si studia il flusso non stazionario prodotto dall'oscillazione di un disco poroso in un fluido e si fornisce una soluzione analitica delle equazioni di Navier–Stokes. Si discute l'effetto di una suzione/iniezione e di una variazione sull'ampiezza della velocità' di oscillazione. Infine si studia il flusso dovuto alle oscillazioni non coassiali di un disco poroso e di un fluido all'infinito.  相似文献   

7.
An exact solution for the three-dimensional flow due to non-coaxial rotation of a porous disk and a second grade fluid at infinity is obtained. It is shown that for uniform suction or uniform blowing at the disk, an asymptotic profile exists for the velocity distribution. The velocity depends on two parameters: one of them is the suction parameter or blowing parameter and the other is the visco-elastic parameter. Furthermore, it is found that when the value of the visco-elastic parameter is fixed, the velocity decreases with an increase in the value of the suction parameter and when the value of the suction parameter is fixed, the velocity increases with an increase in the value of the visco-elastic parameter.  相似文献   

8.
An unsteady flow and heat transfer to an infinite porous disk rotating in a Reiner—Rivlin non-Newtonian fluid are considered. The effect of the non-Newtonian fluid characteristics and injection (suction) through the disk surface on velocity and temperature distributions and heat transfer is considered. Numerical solutions are obtained over the entire range of the governing parameters.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 85–95, January–February, 2005.  相似文献   

9.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.  相似文献   

10.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.   相似文献   

11.
The flow of a nonlinearly viscous (power-law) fluid over the surface of a rotating flat disk is investigated. A solution form which makes it possible to reduce the complete system of partial differential equations to a system of ordinary differential equations is found. This system is integrated using the Runge-Kutta method and reduction to a Cauchy problem on the basis of Newton's method. The velocity and pressure fields in a power-law fluid film flowing over the surface of a rotating flat disk are found numerically.  相似文献   

12.
Magnetohydrodynamic flow of an electrically conducting power-law fluid in the vicinity of a constantly rotating infinite disk in the presence of a uniform magnetic field is considered. The steady, laminar and axi-symmetric flow is driven solely by the rotating disk, and the incompressible fluid obeys the inelastic Ostwald de Waele power-law model. The three-dimensional boundary layer equations transform exactly into a set of ordinary differential equations in a generalized similarity variable. These ODEs are solved numerically for values of the magnetic parameter m up to 4.0. The effect of the magnetic field is to reduce, and eventually suppress, the radially directed outflow. An accompanying reduction of the axial flow towards the disk is observed, together with a thinning of the boundary layer adjacent to the disk, thereby increasing the torque required to maintain rotation of the disk at the prescribed angular velocity. The influence of the magnetic field is more pronounced for shear-thinning than for shear-thickening fluids.  相似文献   

13.
Within the framework of the class of exact solutions of the hydrodynamic equations, characterized by the linear dependence of some of the velocity components on the axial coordinate, the axisymmetric and rotationally symmetric regimes are considered for viscous fluid flow in the gap between two cylinders one of which is being longitudinally deformed while the other is rigid. In the investigated region of the Reynolds number spectrum a point at which a rotationally symmetric solution branches off from the solution without swirl is found and the intervals of multiple values of this parameter, within which each fixed Re corresponds to more than one solution of the rotationally symmetric or axisymmetric type, are distinguished.  相似文献   

14.
Summary The modification of an axi-symmetric viscous flow due to a relative rotation of a disk or fluid by a translation of the boundary are studied. The fluid is taken to be compressible and electrically conducting. The equations governing the motion are solved iteratively through a central-difference scheme. The effect of an axial magnetic field and disk temperature on the flow and heat transfer are included in the present analysis. The translation of the disk or fluid generates a velocity field at each plane parallel to the disk (secondary flow). The cartesian components of the velocity due to the secondary flow are oscillatory in nature when a rigid body rotation of the free stream along with a translation of the disk is considered. The magnetic field damps out the velocity field, and reduces the thickness of the boundary layer. The cross component of wall shear due to secondary flow acts in a direction opposite to the rotation of the disk or fluid for all cases of the motion. The rise in disk temperature produces an increment in the magnitude of the wall shear associated with the secondary flow.  相似文献   

15.
This paper studies the effects of a circular magnetic field on the flow of a conducting fluid about a porous rotating disk. Using modern quasi-Newton and globally convergent homotopy methods, numerical solutions are obtained for a wide range of magnetic field strengths, suction and injection velocities and Alfven and disk speeds. Results are presented graphically in terms of three non-dimensional parameters. There is excellent agreement with previous work and asymptotic formulae.  相似文献   

16.
M. Guria  B. K. Das  R. N. Jana 《Meccanica》2007,42(5):487-493
An analytical solution of the unsteady Navier–Stokes equations is obtained for the flow due to non-coaxial rotations of an oscillating porous disk and a fluid at infinity, rotating about an axis parallel to the axes of rotation of the disk through a fixed point. The velocity distributions and the shear stresses at the disk are obtained for three different cases when the frequency parameter is greater than, equal to or less than the rotation parameter. The flow has a boundary layer structure even in the case of blowing at the disk.  相似文献   

17.
The TiO_2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem(BVP). The BVP is analytically solved with the homotopy analysis method(HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO_2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO_2 nanoparticles increases. This confirms the fact that the occurrence of the TiO_2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased.An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water,while the Nusselt number of the nanofluid is larger than that of pure water. However,both the parameters increase if the magnetic field intensity increases.  相似文献   

18.
Summary The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.  相似文献   

19.
It is shown that when a viscous incompressible fluid is sucked through a stationary porous disk spontaneous rotation of the fluid sets in at a certain Reynolds number. This is consistent with the results of a specially designed experiment. Another unusual result is the existence of multicell regimes, corresponding to suction, when the force acting on the porous, rapidly rotating disk is a lift force and, moreover, anomalously large. Charts of the possible steady-state flow regimes, stable and unstable, have been constructed. In the case of fairly intense suction and rotation a stable self-oscillating regime is observed. In the limit of vanishingly small viscosity unusual boundary layer properties associated with suction are noted.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 53–65, November–December, 1989.  相似文献   

20.
The TiO2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem (BVP). The BVP is analytically solved with the homotopy analysis method (HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO2 nanoparticles increases. This confirms the fact that the occurrence of the TiO2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased. An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water, while the Nusselt number of the nanofluid is larger than that of pure water. However, both the parameters increase if the magnetic field intensity increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号