首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the present work, treating the artery as a tapered, thin walled, long and circularly conical prestressed elastic tube and using the longwave approximation, we have studied the propagation of weakly non-linear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid, the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equation admits a solitary wave-type solution with variable wave speed. It is observed that, the wave speed decreases with distance for positive tapering while it increases for negative tapering. It is further observed that, the progressive wave profile for expanding tubes (a>0) becomes more steepened whereas for narrowing tubes (a<0) it becomes more flattened.  相似文献   

2.
In the present work, by utilizing the non-linear equations of motion of an incompressible, isotropic thin elastic tube subjected to a variable prestretch both in the axial and the radial directions and the approximate equations of motion of an incompressible inviscid fluid, which is assumed to be a model for blood, we studied the propagation of weakly non-linear waves in such a medium, in the long wave approximation. Employing the reductive perturbation method we obtained the variable coefficient KdV equation as the evolution equation. By seeking a travelling wave solution to this evolution equation, we observed that the wave speed is variable in the axial coordinate and it decreases for increasing circumferential stretch (or radius). Such a result seems to be plausible from physical considerations.  相似文献   

3.
4.
T.R. Marchant 《Wave Motion》1996,23(4):307-320
Marangoni-Bénard convection is the process by which oscillatory waves are generated on an interface due to a change in surface tension. This process, which can be mass or temperature driven is described by a perturbed Korteweg-de Vries (KdV) equation. The evolution and interaction of solitary waves generated by Marangoni-Bénard convection is examined. The solitary wave with steady-state amplitude, which occurs when the excitation and friction terms of the perturbed KdV equation are in balance is found to second-order in the perturbation parameter. This solitary wave has a fixed amplitude, which depends on the coefficients of the perturbation terms in the governing equation. The evolution of a solitary wave of arbitrary amplitude to the steady-state amplitude is also found, to first-order in the perturbation parameter. In addition, by using a perturbation method based on inverse scattering, it is shown that the interaction of two solitary waves is not elastic with the change in wave amplitude determined. Numerical solutions of the perturbed KdV equation are presented and compared to the asymptotic solutions.  相似文献   

5.
This paper employs an approximate form of analysis based on the assumption of plane stress to find the transport equation and corresponding evolution law governing the intensity of acceleration wave propagation in an elastic rod of slowly varying area of cross-section. The result is then extended to include the case of slightly bent rods. In each of these cases it is shown that for a medium in which the strain energy function Σ(p) is such that d3Σ/dp3 ≠ 0, with p the displacement gradient, the acceleration wave intensity is governed by a Bernoulli equation. The work is concluded by showing that the analysis may also be applied to the case of a composite rod comprising an arbitrary number of homogeneous isotropic plane layers normal to the direction of acceleration wave propagation.  相似文献   

6.
In the present work, treating the large arteries as a thin-walled, long and circularly cylindrical, prestressed elastic tube with variable cross-section and using the reductive perturbation method, we have studied the amplitude modulation of non-linear waves in such a fluid-filled elastic tube. By considering the blood as an incompressible viscous fluid, the evolution equation is obtained as the dissipative non-linear Schrödinger equation with variable coefficients. It is shown that this type of equations admit a solitary wave solution with a variable wave speed. It is observed that, the wave speed increases with distance for narrowing tubes while it decreases for expanding tubes.  相似文献   

7.
Upon discovering the wrongness of the statement “although this term does not cause any secularity for this order it will cause secularity at higher order expansion, therefore, that term must vanish” by Su and Mirie [4], in the present work, we studied the head-on collision of two solitary waves propagating in shallow water by introducing a set of stretched coordinates in which the trajectory functions are of order of ϵ2, where ϵ is the smallness parameter measuring non-linearity. Expanding the field variables and trajectory functions into power series in ϵ, we obtained a set of differential equations governing various terms in the perturbation expansion. By solving them under non-secularity condition we obtained the evolution equations and also the expressions for phase functions. By seeking a progressive wave solution to these evolution equations we have determined the speed correction terms and the phase shifts. As opposed to the result of Su and Mirie [4] and similar works, our calculations show that the phase shifts depend on both amplitudes of the colliding waves.  相似文献   

8.
It is considered that a thin strut sits in a supercritical shallow water flow sheet over a homogeneous or very mildly varying topography. This stationary 3-D problem can be reduced from a Boussinesq-type equation into a KdV equation with a forcing term due to uneven topography, in which the transverse coordinate Y plays a same role as the time in original KdV equation. As the first example a multi-soliton wave pattern is shown by means of N-soliton solution. The second example deals with the generation of solitary wave-train by a wedge-shaped strut on an even bottom. Whitham's average method is applied to show that the shock wave jump at the wedge vertex develops to a cnoidal wave train and eventually to a solitary wavetrain. The third example is the evolution of a single oblique soliton over a periodically varying topography. The adiabatic perturbation result due to Karpman & Maslov (1978) is applied. Two coupled ordinary differential equations with periodic disturbance are obtained for the soliton amplitude and phase. Numerical solutions of these equations show chaotic patterns of this perturbed soliton.  相似文献   

9.
In the present work, by employing the non-linear equations of motion of an incompressible, inhomogeneous, isotropic and prestressed thin elastic tube with variable radius and the approximate equations of an inviscid fluid, which is assumed to be a model for blood, we studied the propagation of non-linear waves in such a medium, in the longwave approximation. Utilizing the reductive perturbation method we obtained the variable coefficient Korteweg–de Vries (KdV) equation as the evolution equation. By seeking a progressive wave type of solution to this evolution equation, we observed that the wave speed decreases for increasing radius and shear modulus, while it increases for decreasing inner radius and the shear modulus.  相似文献   

10.
In this work, we study the motion of N localized vortices in the presence of ‘noise’. To apply the methods of statistical mechanics, we determine the evolution equation for the probability density function of vortices in which the presence of the ‘noise’ is accounted for by as a term similar to viscosity. This equation is isomorph to the system of equations which describe 2D turbulence with viscosity. The advantage of this formulation is that it can be numerically implemented at very large Reynolds numbers. To cite this article: S. Decossin, V. Pavlov, C. R. Mecanique 331 (2003).  相似文献   

11.
We study a diffuse interface model for the flow of two viscous incompressible Newtonian fluids of the same density in a bounded domain. The fluids are assumed to be macroscopically immiscible, but a partial mixing in a small interfacial region is assumed in the model. Moreover, diffusion of both components is taken into account. This leads to a coupled Navier–Stokes/Cahn–Hilliard system, which is capable of describing the evolution of droplet formation and collision during the flow. We prove the existence of weak solutions of the non-stationary system in two and three space dimensions for a class of physical relevant and singular free energy densities, which ensures—in contrast to the usual case of a smooth free energy density—that the concentration stays in the physical reasonable interval. Furthermore, we find that unique “strong” solutions exist in two dimensions globally in time and in three dimensions locally in time. Moreover, we show that for any weak solution the concentration is uniformly continuous in space and time. Because of this regularity, we are able to show that any weak solution becomes regular for large times and converges as t → ∞ to a solution of the stationary system. These results are based on a regularity theory for the Cahn–Hilliard equation with convection and singular potentials in spaces of fractional time regularity as well as on maximal regularity of a Stokes system with variable viscosity and forces in L 2(0, ∞; H s (Ω)), ${s \in [0, \frac12)}$ , which are new themselves.  相似文献   

12.
We present a theory of very long waves propagating on the surface of water. The waves evolve slowly, both on the scale ε (weak nonlinearity), and on the scale, σ, of the depth variation. In our model, dispersion does not affect the evolution of the wave even over the large distances that tsunamis may travel. We allow a distribution of vorticity, in addition to variable depth. Our solution is not valid for depth=O(ε4/5); the equations here are expressed in terms of the single parameter ε2/5σ and matched to the solution in deep water. For a slow depth variation of the background state (consistent with our model), we prove that a constant-vorticity solution exists, from deep water to shoreline, and that regions of isolated vorticity can also exist, for appropriate bottom profiles. We describe how the wave properties are modified by the presence of vorticity. Some graphical examples of our various solutions are presented.  相似文献   

13.
The effect of a uniform electromagnetic field on the stability of a thin layer of an electrically conducting viscoelastic liquid flowing down on a nonconducting inclined plane is studied under the induction-free approximation. Long-wave expansion method is used to obtain the surface evolution equation. The stabilizing role of the magnetic parameter M and the destabilizing role of the viscoelastic parameter Γ as well as the electric parameter E on this flow field are established. A novel result which emerges from our analysis is that the stabilizing effect of M holds no longer true for both viscous and viscoelastic fluids in the presence of electromagnetic field. It is found that when E exceeds a certain critical value depending on Γ, magnetic field exhibits the destabilizing effect on this flow field. Indeed, this critical value decreases with the increase of the viscoelastic parameter Γ since it has a destabilizing effect inherently. Another noteworthy result which arises from the weakly nonlinear stability analysis is that both the subcritical unstable and supercritical stable zones are possible together with the unconditional stable and explosive zones for different values of Γ depending on the wave number k.  相似文献   

14.
We investigate numerically the stability of periodic traveling wave solutions (cnoidal waves) for a generalized Benney–Luke equation. By using a high-accurate Fourier spectral method, we find different kinds of evolution depending on the period of the perturbation. A cnoidal wave solution with period T is orbitally stable with regard to perturbations having the same period T, within certain range of wave velocities. This is a fact proved recently by Angulo and Quintero [Existence and orbital stability of cnoidal waves for a 1D boussinesq equation, International Journal of Mathematics and Mathematical Sciences (2007), in press, doi:10.1155/2007/52020] and our numerical experiments are consistent with their theory. In the present work we show numerically that cnoidal waves with period T become unstable when perturbed by small amplitude disturbances whose period is an integer multiple of T. Particularly, if the period of the perturbation is 2T, the evolution of the deviation of the solution from the orbit of the cnoidal wave is found to be approximately a time-periodic function. In other cases, the numerical experiments indicate a non-periodic behavior.  相似文献   

15.
The existence of travelling wave type solutions is studied for a scalar reaction diffusion equation in \(\mathbb {R}^2\) with a nonlinearity which depends periodically on the spatial variable. We treat the coefficient of the linear term as a parameter and we formulate the problem as an infinite spatial dynamical system. Using a centre manifold reduction we obtain a finite dimensional dynamical system on the centre manifold with fully degenerate linear part. By phase space analysis and Conley index methods we find conditions on the parameter and nonlinearity for the existence of travelling wave type solutions with particular wave speeds. The analysis provides an approach to the homogenisation problem as the period of the periodic dependence in the nonlinearity tends to zero.  相似文献   

16.
We study stability of N-solitary wave solutions of the Fermi-Pasta-Ulam (FPU) lattice equation. Solitary wave solutions of the FPU lattice equation cannot be characterized as critical points of conservation laws due to the lack of infinitesimal invariance in the spatial variable. In place of standard variational arguments for Hamiltonian systems, we use an exponential stability property of the linearized FPU equation in a weighted space which is biased in the direction of motion. The dispersion of the linearized FPU equation balances the potential term for low frequencies, whereas the dispersion is superior for high frequencies.We approximate the low frequency part of a solution of the linearized FPU equation by a solution to the linearized Korteweg-de Vries (KdV) equation around an N-soliton solution. We prove an exponential stability property of the linearized KdV equation around N-solitons by using the linearized Bäcklund transformation and use the result to analyze the linearized FPU equation.  相似文献   

17.
Peyret (J. Fluid Mech., 78, 49–63 (1976)) and others have described artificial compressibility iteration schemes for solving implicit time discretizations of the unsteady incompressible Navier-Stokes equations. Such schemes solve the implicit equations by introduing derivatives with respect to a pseudo-time variable τ and marching out to a steady state in τ. The pseudo-time evolution equation for the pressure p takes the form ?p/? = ?a2??.u, where a is an artificial compressibility parameter and u is the fluid velocity vector. We present a new scheme of this type in which convergence is accelerated by a new procedure for setting a and by introducing an artificial bulk viscosity b into the momentum equation. This scheme is used to solve the non-linear equations resulting from a fully implicit time differencing scheme for unsteady incompressible flow. We find that the best values of a and b are generally quite different from those in the analogous scheme for steady flow (J. D. Ramshaw and V. A. Mousseau, Comput. Fluids, 18, 361–367 (1990)), owing to the previously unrecognized fact that the character of the system is profoundly altered by the pressence of the physical time derivative terms. In particular, a Fourier dispersion analysis shows that a no longer has the significance of a wave speed for finite values of the physical time step δt,. Inded, if on sets a ? |u| as usual, the artificial sound waves cease to exist when δt is small and this adversely affects the iteration convergence rate. Approximate analytical expressions for a and b are proposed and the benefits of their use relative to the conventional values a ~ |u| and b = 0 are illustrated in simple test calculations.  相似文献   

18.
By method of the Laplace transform, this article presents semi-analytical solutions for transient electroosmotic and pressure-driven flows (EOF/PDF) of two-layer fluids between microparallel plates. The linearized Poisson-Boltzmann equation and the Cauchy momentum equation have been solved in this article. At the interface, the Maxwell stress is included as the boundary condition. By numerical computations of the inverse Laplace transform, the effects of dielectric constant ratio ε , density ratio ρ , pressure ratio p, viscosity ratio μ of layer II to layer I, interface zeta potential difference △ψ, interface charge density jump Q, the ratios of maximum electro-osmotic velocity to pressure velocity α , and the normalized pressure gradient B on transient velocity amplitude are presented.We find the velocity amplitude becomes large with the interface zeta potential difference and becomes small with the increase of the viscosity. The velocity will be large with the increases of dielectric constant ratio; the density ratio almost does not influence the EOF velocity. Larger interface charge density jump leads to a strong jump of velocity at the interface. Additionally, the effects of the thickness of fluid layers (h1 and h2 ) and pressure gradient on the velocity are also investigated.  相似文献   

19.
In this paper, we prove short time existence, uniqueness, and regularity for a surface diffusion evolution equation with curvature regularization in the context of epitaxially strained two-dimensional films. This is achieved by using the H ?1-gradient flow structure of the evolution law, via De Giorgi??s minimizing movements. This seems to be the first short time existence result for a surface diffusion type geometric evolution equation in the presence of elasticity.  相似文献   

20.
We study the asymptotic behavior of compressible isentropic flow through a porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping. As t ?? ??, the density is conjectured to obey the well-known porous medium equation and the momentum is expected to be formulated by Darcy??s law. In this paper, we prove that any L ?? weak entropy solution to the Cauchy problem of damped Euler equations with finite initial mass converges strongly in the natural L 1 topology with decay rates to the Barenblatt profile of the porous medium equation. The density function tends to the Barenblatt solution of the porous medium equation while the momentum is described by Darcy??s law. The results are achieved through a comprehensive entropy analysis, capturing the dissipative character of the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号