首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Béla Pete  Gyula Parlagh 《Tetrahedron》2004,60(40):8829-8837
Valuable new synthetic intermediates, 4-, 5- or 6-chloromethyl-1H-indole-2-carboxylates, were prepared by the facile elimination of SO2 from 2-ethoxycarbonyl-1H-indole-4-, 5- or 6-methanesulfonic acids, respectively, easily accessible by Fischer-type indolization.  相似文献   

2.
Reactions of two isomers—2-chloro-1-(oxiran-2-ylmethyl)-1H-indole-3-carbaldehyde or 2-(chloromethyl)-2,3-dihydro[1,3]oxazolo[3,2-a]indole-9-carbaldehyde with aromatic amines lead to the same products in both cases—hydrochlorides of pyrimido[1,2-a]indole derivatives containing two fragments of an amine per one part of the indole nucleus. Its structure was confirmed by X-ray analysis of the crystals base, obtained by alkali treatment of the reaction product (when aryl is 4-MeOC6H4).  相似文献   

3.
A simple and efficient synthesis of 2-(cyclohexylamino)-6,7-dihydro-3-aryl-1H-indole-4(5H)-ones was achieved via a one-pot multi-component reaction of cyclohexyl isocyanide, an aldehyde, a 1,3-dicarbonyl compound, and ammonium acetate in the presence of a catalytic amount of KHSO4 in acetonitrile.  相似文献   

4.
Abstract

A mild and efficient method for the synthesis of 1-oxo-9H-thiopyrano[3,4-b]indole-3-carboxylic acids and dimerized 3-(4-carboxy-1H-3-indolyl)-2-propenoic acids via alkaline hydrolysis of 3-(rhodanin-5-yl)-1H-indole-2-carboxylic acids derivatives was elaborated. Anticancer activity screening in NCI60-cell lines assay allowed identification of 5-fluoro-3-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-1H-indole-2-carboxylic acid methyl ester 2a with significant antimitotic activity at micromolar and submicromolar concentrations.  相似文献   

5.
A new class of dihydropyrazolo[3′,4′:3,4]pyrrolo[1,2-a]indoles and spiro[3H-indole-3,3′-[Δ2-1,2,4]-triazoline]-2-ones were synthesised via intra and intermolecular 1,3-dipolar cycloaddition reactions in good yields.  相似文献   

6.
Alkyl 3-(2-aminoethyl)-1H-indole-2-acetates 6a and 6b are synthesized starting from methyl 1H-indole-2-acetate (2) via methyl 3-(2-nitroethenyl)-1H-indole-2-acetate (4) and the alkyl 3-(2-nitroethyl)-1H-indole-2-acetates 5a and (Scheme 1). Analogously, diisopropyl 3-(2-aminoethyl)-1H-indole-2-malonate 20b is obtained from diisopropyl 1H-indole-2-malonate 11c (Scheme 4). An alternative synthesis of 20a and 20b follows a route via 15–18 and the dialkyl 3-(2-azidoethyl)-1H-indole-2-malonates 19a and 19b , respectively (Scheme 3). The aminoethyl compounds 6a and 20a are easily transformed into lactams 7 and 21 , respectively. Procedures for the preparation of the indoles 2 and 11a and of the alkylating agent 14 are described. A tautomer 12 of 11a is isolated.  相似文献   

7.
Stereoselective diazotization of (S)-2-amino-2-phenyl acetic acid (L-phenyl glycine) (4) with NaNO2 in 6% H2SO4 in a mixture of acetone and water gave optically pure (S)-2-hydroxy-2-phenyl acetic acid (L-mandelic acid) (5). Esterification, gave (S)-2-hydroxy-2-phenyl acetic acid esters (6). The latter was treated with chloroacetyl chloride in the presence of triethylamine (TEA) in dichloromethane (DCM) to yield (S)-2-chloroacetyloxy phenyl acetic acid ester (2). In another sequence, the reaction of 2-(chloromethyl)-3-arylquinazolin-4(3H)-one (9) treated with N-Boc piperazine, followed by deprotection of the Boc group, to obtain 3-aryl-2-((piperazin-1-yl)methyl) quinazolin-4(3H)-one (3). Reaction of 2 with 3 in the presence of K2CO3 and KI gave the title compound, 2-(2-(4-((3,4-dihydro-4-oxo-3-arylquinazolin-2-yl)methyl)piperazin-1-yl) acetoyloxy)-2-phenyl acetic acid esters (1). The structures of all the new compounds obtained in the present work are supported by spectral and analytical data.  相似文献   

8.
N,N-Dimethyl-o-toluidine, N,N-dimethylaniline, and N,N-diethylaniline were treated with n-butyllithium-tmeda in diethyl ether-hexane solution to give o-lithioarylamines, which react with various electrophiles (benzophenone, dicyclohexyl ketone, benzaldehyde, and Ph(H)CNPh) to form the corresponding (2-dialkylaminophenyl)alcohols 1-HOCPh2-2-NMe2C6H4 (1), 1-HOCCy2-2-NMe2C6H4 (2), 1-HOCPh2CH2-2-NMe2C6H4 (4), 1-HOC(H)PhCH2-2-NMe2C6H4 (6), and 1-HOCPh2-2-NEt2C6H4 (7), and the 2-phenylaminoalkyl-dimethylaminobenzene derivatives 1-NMe2-2-NH(Ph)C(H)PhC6H4 (3) and 1-NMe2-2-NH(Ph)C(H)PhCH2C6H4 (5). Compounds 1-7 were characterized spectroscopically (NMR, IR, MS) and by crystal structure determination.  相似文献   

9.
Spontaneous S-alkylation of methimazole (1) with 1,2-dichloroethane (DCE) into 1,2-bis[(1-methyl-1H-imidazole-2-yl)thio]ethane (2), that we have described recently, opened the question about its formation pathway(s). Results of the synthetic, NMR spectroscopic, crystallographic and computational studies suggest that, under given conditions, 2 is obtained by direct attack of 1 on the chloroethyl derivative 2-[(chloroethyl)thio]-1-methyl-1H-imidazole (3), rather than through the isolated stable thiiranium ion isomer, i.e., 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium chloride (4a, orthorhombic, space group Pnma), or in analogy with similar reactions, through postulated, but unproven intermediate thiiranium ion 5. Furthermore, in the reaction with 1, 4a prefers isomerization to the N-chloroethyl derivative, 1-chloroethyl-2,3-dihydro-3-methyl-1H-imidazole-2-thione (7), rather than alkylation to 2, while 7 further reacts with 1 to form 3-methyl-1-[(1-methyl-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8, monoclinic, space group P 21/c). Additionally, during the isomerization of 3, the postulated intermediate thiiranium ion 5 was not detected by chromatographic and spectroscopic methods, nor by trapping with AgBF4. However, trapping resulted in the formation of the silver complex of compound 3, i.e., bis-{2-[(chloroethyl)thio]-1-methyl-1H-imidazole}-silver(I)tetrafluoroborate (6, monoclinic, space group P 21/c), which cyclized upon heating at 80 °C to 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium tetrafluoroborate (4b, monoclinic, space group P 21/c). Finally, we observed thermal isomerization of both 2 and 2,3-dihydro-3-methyl-1-[(1-methyl-1H-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8), into 1,2-bis(2,3-dihydro-3-methyl-1H-imidazole-2-thione-1-yl)ethane (9), which confirmed their structures.  相似文献   

10.
The triphenyltin(IV) complexes of 4-[((E)-1-{2-hydroxy-5-[(E)-2-(2-carboxyphenyl)-1-diazenyl]phenyl}methylidene)amino]aryls (aryls = 4-CH3, 4-Br, 4-Cl, 4-OCH3) have been synthesized and characterized by 1H-, 13C-, 119Sn-NMR, ESI mass spectrometry, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The crystal structures of a representative carboxylate ligand (aryl = 4-CH3) and three Sn complexes, viz., polymeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])n (X = Me (1) and Br (2)) and dimeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])2 (X = OMe (4)) complexes are reported. The coordination environment in each complex is trigonal bipyramidal trans-Ph3SnO2. A single zwitterionic carboxylate ligand bridges adjacent Sn atoms via the carboxylate and phenoxide O atoms.  相似文献   

11.
3-Hydroxy-3-(2-oxoethyl)-6-phenyl-2,3-dihydropyridazin-4(1H)-ones were obtained by the reaction of methyl 3-oxo-5-phenylfuran-2(3H)-ylideneacetate or 2-[2-(4-chlorophenyl)-2-oxoethylidene]-5-phenylfuran-3(2H)-one with benzoic or p-nitrobenzoic isopropylidenehydrazides. Equilibrium C(5)H and C(5)H2 tautomeric forms were detected in solutions of the 4-chlorophenyl derivatives in DMSO-d6. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1156–1158, August, 2007.  相似文献   

12.
In this study, a novel and convenient route for the construction of 5-((1H-1,2,4-triazol-1-yl)methyl)-1H-indoles (8) is presented starting from (1H-1,2,4-triazol-1-yl)methanol (5) and indolines (6) under 98% H2SO4 at room temperature for 4–24 h, followed by deacetylation and dehydrogenation. Based on this finding, a novel route to synthesize Rizatriptan starting from tryptamine was designed and accomplished with 48.5% overall yield in 6 steps. Compared with operational art, the new route afforded higher yield and more pure products requiring no chromatographic purification, which may further be applied in industrialization.  相似文献   

13.
Oxidation of 4-substituted 2,2-bis(trifluoromethyl)thietanes by m-chloroperoxybenzoic acid results in selective formation of the corresponding S-oxides in 65-86% yield. Oxidation of 4-C2H5S-2,2-bis(trifluoromethyl)thietane under mild conditions led to selective formation of 4-C2H5SO2-2,2-bis(trifluoromethyl)thietane, which under more rigorous conditions was selectively converted into trans-4-C2H5SO2-2,2-bis(trifluoromethyl)thietane-1-S-oxide. Reaction of 4-substituted 2,2-bis(trifluoromethyl)thietanes with activated aluminum powder results in a highly selective ring expansion process, producing the corresponding 5-fluoro-4-(trifluoromethyl)-2,3-dihydro-2-alkoxythiophenes in 58-93% yield. These compounds were also prepared in 61-85% yield using a “one-pot” procedure, starting from sulfur, hexafluoropropene and the corresponding vinyl ether without isolation of any intermediates. Both 2-i-C3H7O- and 2-t-C4H9O- 5-fluoro-4-(trifluoromethyl)-2,3-dihydrothiophenes were converted into 2-fluoro-3-trifluormethylthiophene by reaction with P2O5.  相似文献   

14.
Reactions of Zn(II) salts, 5-(4-(1H-imidazol-1-yl)phenyl)-1H-tetrazolate (HIPT) and 2-mercaptobenzoic acid or 2-propyl-1H-imidazole-4,5-dicarboxylic acid (H3PrIDC), result in two mixed-ligand coordination polymers (CPs), [Zn2(IPT)(DSDB)(OH)]n (H2DSDB = 2,2′-disulfanediyldibenzoic acid, 1) and [Zn2(IPT)(PrIDC)(H2O)]n (H3PrIDC = 2-propyl-1H-imidazole-4,5-dicarboxylic acid, 2). Compound 1 possesses a 2-D structure built by 1-D [Zn(IPT)]n chains and DSDB2? connectors, in which the DSDB2? is generated via in situ reaction from 2-mercaptobenzoic acid. It displays a new intricate 4-nodal {3·4·6·7·8·9}{3·6·7·8·9·10}{3·8·9}{4·6·8} topology. Compound 2 displays a 3-D framework with new 3-connected topology with Schläfli symbol of (4·8·10) (8·122), in which the 1-D Zn-carboxylate chains were bridged by 3-connected IPT? ligands. The thermal stabilities and luminescence properties of 1 and 2 have also been studied. The compounds exhibit intense solid-state fluorescent emissions at room temperature.  相似文献   

15.
Microwave irradiation has become a popular heating technique in organic synthesis, mainly due to its short reaction times, solventless reactions, and, sometimes, higher yields. Additionally, microwave irradiation lowers energy consumption and, consequently, is ideal for optimization processes. Moreover, there is evidence that microwave irradiation can improve the regioselectivity and stereoselectivity aspects of vital importance in synthesizing bioactive compounds. These crucial features of microwave irradiation contribute to its inclusion in green chemistry procedures. Since 2003, the use of microwave-assisted organic synthesis has become common in our laboratory, making our group one of the first Portuguese research groups to implement this heating source in organic synthesis. Our achievements in the transformation of heterocyclic compounds, such as (E/Z)-3-styryl-4H-chromen-4-ones, (E)-3-(2-hydroxyphenyl)-4-styryl-1H-pyrazole, (E)-2-(4-arylbut-1-en-3-yn-1-yl)-4H-chromen-4-ones, or (E)-2-[2-(5-aryl-2-methyl-2H-1,2,3-triazol-4-yl)vinyl]-4H-chromen-4-ones, will be discussed in this review, highlighting the benefits of microwave irradiation use in organic synthesis.  相似文献   

16.
3,4-Dihydro-1,4,4a,6a-tetraaza-benzo[a]fluoren-2-one, a new tetracyclic heterocyclic framework, is designed through a simple and convenient synthetic sequence. Its 6-aryl derivatives are synthesized starting from 1H-indole-2-carboxylic acid. The reaction of differently substituted phenacyl bromides with 1H-indole-2-carboxylic acid and POCl3-mediated cyclization of the resultant 1H-indole-2-carboxylic acid phenacyl ester provided 2-oxa-4a-aza-fluoren-1-one, and its sequential reaction with hydrazine and 2-chloro-acetamide furnished the desired new heterocyclic compounds 7a–f.  相似文献   

17.
Hirayama N  Deguchi M  Kawasumi H  Honjo T 《Talanta》2005,65(1):255-260
Possible use of room temperature ionic liquids (RTILs) as chelate extraction solvent was evaluated by using 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). These RTILs showed high extraction performance for divalent metal cations with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htta). The extracted metals were back-extracted into 1 mol dm−3 nitric acid quantitatively. Furthermore, the extracted species were estimated as neutral hydrated complexes M(tta)2(H2O)n (n= 1 or 2) for M = Ni, Cu and Pb and anionic complexes M(tta)3 for M = Mn, Co, Zn and Cd.  相似文献   

18.
In this article, eight new silver coordination polymers constructed from two structurally related ligands, 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole) (bbmb) and 1,1′-(1,4-butanediyl)bis(2-ethylbenzimedazole) (bbeb), have been synthesized: [Ag(L1)(bbmb)]·C2H5OH·H2O (1), [Ag(L2)(bbmb)]·C2H5OH (2), [Ag(L3)(bbmb)] (3), [Ag2(L4)(bbmb)2]·C2H5OH (4), [Ag(L2)(bbeb)]·C2H5OH (5), [Ag(L5)(bbeb)]·CH3OH (6), [Ag2(L6)2(bbeb)]·H2O (7), and [Ag2(L7)(bbeb)2]·4(H2O) (8), where L1 = benzoate anion, L2 = p-methoxybenzoate anion, L3 = 2-amino-benzoate anion, L4 = oxalate anion, L5 = cinnamate ainon, L6 = 3-amino-benzoate anion, and L7 = fumaric anion. In 1-3, 5 and 6, the bidentate N-donor ligands (bbmb and bbeb) in trans conformations bridge neighboring silver centers to form 1D single chain structures. The carboxylate anions are attached on both sides of the chains. Moreover, 1 and 3 are extended into 2D layers, while 2 and 6 are extended into 3D frameworks through π-π interactions. In 4, the bbmb ligands bridge adjacent Ag(I) centers to form -Ag-bbmb-Ag- chains, which are further connected by L4 anions to form a 2D layer. The resulting layers are extended into 3D frameworks through strong π-π interactions. In 7, the N-donor ligands (bbeb) in trans conformations bridge two silver centers to generate a [Ag2(bbeb)]2+ unit. The adjacent [Ag2(bbeb)]2+ units are further connected via the L6 anions to form a 1D ladder chain. Moreover, the structure of compound 7 is extended into a 3D framework through hydrogen bonding and π-π interactions. In 8, two Ag(I) cations are bridged by two bbeb ligands in cis conformations to form a [Ag2(bbeb)2]2+ ring, which are further linked by L7 anions to generate a 1D string chain. Furthermore, the hydrogen bonding and π-π interactions link L7 anions to form a 2D supramolecular sheet. Additionally, the luminescent properties of these compounds were also studied.  相似文献   

19.
N-(α-Ketoacyl)anthranilic acids were prepared by oxidative ring opening of 3-hydroxyquinoline-2,4(1H,3H)-diones by using paraperiodic acid (H5IO6) or sodium periodate (NaIO4). The optimisation of the reaction conditions is described as well as the utilisation of N-(α-ketoacyl)anthranilic acids in the preparation of anthranilic acid hydrochlorides.  相似文献   

20.
The synthesis, structural characterization, and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands (ortho-(OH)2C6H3-4-CHpz2, ortho-(OH)2C6H3-4-CH(3-Phpz)2, and ortho-(OH)2C6H3-4-CH(3-tBupz)2) with pyrazole, 3-phenylpyrazole, and 3-tert-butylpyrazole as donors are described. The reaction of a soluble PdCl2-source with ortho-(OH)2C6H3-4-CHpz2 in acetonitrile yielded the related square-planar N,N-coordinated Pd(II) dichloride complex, whereas treatment of ortho-(OH)2C6H3-4-CH(3-Phpz)2 or ortho-(OH)2C6H3-4-CH(3-tBupz)2 with PdCl2 in acetonitrile resulted in degradation of these ligands. The Pd(II) complexes trans-(3-PhpzH)2PdCl2 and trans-(3-tBupzH)2PdCl2 were isolated and fully characterized including X-ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号