首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The dilute lamellar phase of the nonionic surfactant C 12EO 5 was doped with goethite (iron oxide) nanorods up to a fraction of 5 vol %. The interaction between the inclusions and the host phase was studied by polarized optical microscopy (with or without an applied magnetic field) and by small-angle X-ray scattering. We find that, when the orientation of the nanorods is modified using the magnetic field, the texture of the lamellar phase changes accordingly; one can thus induce a homeotropic-planar reorientation transition. On the other hand, the lamellar phase induces an attractive interaction between the nanorods. In more concentrated lamellar phases (under stronger confinement) the particles form aggregates. This behavior is not encountered for a similar system doped with spherical particles, emphasizing the role of particle shape in the interaction between doping particles and the host phase.  相似文献   

2.
We present the phase diagram and the microstructure of the binary surfactant mixture of AOT and C(12)E(4) in D(2)O as characterized by surface tension and small angle neutron scattering. The micellar region is considerably extended in composition and concentration compared to that observed for the pure surfactant systems, and two types of aggregates are formed. Spherical micelles are present for AOT-rich composition, whereas cylindrical micelles with a mean length between 80 and 300 ? are present in the nonionic-rich region. The size of the micelles depends on both concentration and molar ratio of the surfactant mixtures. At higher concentration, a swollen lamellar phase is formed, where electrostatic repulsions dominate over the Helfrich interaction in the mixed bilayers. At intermediate concentrations, a mixed micellar/lamellar phase exists.  相似文献   

3.
The phase behaviors of the binary mixture of an anionic surfactant aerosol OT (AOT) and water are investigated on a mesoscopic level using dissipative particle dynamics (DPD) computer simulations. With a simple surfactant model, various aggregation structures of AOT in water including the lamellar, viscous isotropic, and reverse hexagonal phases are obtained, which agree well with the experimental phase diagram. Special attention is given on the unusual lamellar regions. Water diffusivity shows much useful information to understand how the phase behaviors varied with concentration and temperature. It is proposed that the anomalous lamellar phenomena at intermediate AOT concentration (about 40%) are due to the formation of a defective structure, pseudoreversed hexagonal phase, which evidently decreases the water diffusivity. After increasing temperature above 328 K, the pseudoreversed hexagonal structure will be partly transformed to a normal lamellar phase structure and the system lamellar ordering is therefore enhanced.  相似文献   

4.
Sheared self-assembled lamellar phases formed by symmetrical diblock copolymers are investigated through dissipative particle dynamics simulations. Our intent is to provide insight into the experimental observations that the lamellar phases adopt parallel alignment at low shear rates and perpendicular alignment at high shear rates and that it is possible to use shear to induce a transition from the parallel to perpendicular alignment. Simulations are initiated either from lamellar structures prepared under zero shear where lamellae are aligned into parallel, perpendicular, or transverse orientations with respect to the shear direction or from a disordered melt obtained by energy minimization of a random structure. We first consider the relative stability of the parallel and perpendicular phases by applying shear to lamellar structures initially aligned parallel and perpendicular to the shear direction, respectively. The perpendicular lamellar phase persists for all shear rates investigated, whereas the parallel lamellar phase is only stable at low shear rates, and it becomes unstable at high shear rates. At the high shear rates, the parallel lamellar phase first transforms into an unstable diagonal lamellar phase; and upon further increase of the shear rate, the parallel lamellar phase reorients into a perpendicular alignment. We further determine the preferential alignment of the lamellar phases at low shear rate by performing the simulations starting from either the initial transverse lamellar structure or the disordered melt. Since the low shear-rate simulations are plagued by the unstable diagonal lamellar phases, we vary the system size to achieve the natural spacing of the lamellae in the simulation box. In such cases, the unstable diagonal lamellar phases disappear and lamellar phases adopt the preferential alignment, either parallel or perpendicular. In agreement with the experimental observations, the simulations show that the lamellar phase preferentially adopts the parallel orientation at low shear rates and the perpendicular orientation at high shear rates. The simulations further reveal that the perpendicular lamellar phase has lower internal energy than the parallel lamellar phase, whereas the entropy production of the perpendicular lamellar phase is higher with respect to the parallel lamellar phase. Values of the internal energy and entropy production for the unstable diagonal lamellar phases lie between the corresponding values for the parallel and perpendicular lamellar phases. These simulation results suggest that the relative stability of the parallel and perpendicular lamellar phases at low shear rates is a result of the interplay between competing driving forces in the system: (a) the system's drive to adopt a structure with the lowest internal energy and (b) the system's drive to stay in a stationary nonequilibrium state with the lowest entropy production.  相似文献   

5.
Rod-coil diblock copolymers are a special kind of molecule containing a rigid rod and a flexible part. We present a systematic study on self-assembly of the rod-coil copolymers in nanoslits using a hybrid density functional theory. The self-assembly of the rod-coil molecule is driven by the bulk concentration, and there exists a critical bulk concentration beyond which the rod-coil molecule self-assembled into ordered lamellar structures in the slit, otherwise it is in a disordered state. By monitoring the effect of the interaction (epsilon(TT)(*)) of molecular tail on the self-assembly, we found that in the nanoslit of H=13sigma, it is at epsilon(TT)(*)=8 rather than epsilon(TT)(*)=10 or epsilon(TT)(*)=12 that the minimal critical bulk concentration occurs. It may be because the strong tail-tail interaction leads to aggregation of the copolymer molecules in bulk phase, and the resulting supramolecular structures are fairly difficult to enter the slit due to the depletion effect. At a fixed slit, the structural evolution of the self-assembled film with the bulk concentration is observed, including trilayer and five-layer lamellar structures, smectic-A, smectic-C, and a mixture of smectic-A and smectic-C liquid crystal phases and so on. We found that the critical bulk concentration, corresponding to the disordered-ordered phase transition, greatly depends on the separation between two walls, and it changes periodically with the increase of the slit width. In addition, it is also found that the molecular flexibility is one of key factors determining the self-assembled structure in the slit, and the critical bulk density increases with the molecular flexibility.  相似文献   

6.
The shear-induced isotropic-to-lamellar phase transition in the amphiphilic systems in the vicinity of the quiescent order-to-disorder transition point is investigated by the large-scale parallel nonequilibrium molecular dynamics simulations of simple amphiphilic model systems. There is a shear-induced upward shift of the ordering temperature. The initial isotropic phase orders into a lamellar phase perpendicular to the shear vorticity. The phase diagram as a function of temperature and shear rate is established. The dependency of the ordering transition on interaction strength and shear rate is rationalized by the competition between shear rate and chain relaxation. The time evolution of morphology reveals that the shear-induced ordering proceeds via nucleation and growth, a signature of a first-order phase transition. At low shear rate, a single ordered domain grows after an incubation period. With increasing shear rate ordering speeds up, but eventually develops in a lamellar system with disordered shear bands. The time dependence of the order parameter follows that of the mean-squared end-to-end distance, shear viscosity, and bulk pressure, and follows an Avrami scheme with an Avrami exponent between 2 and 4.  相似文献   

7.
ABSTRACT

We are reporting on the interaction of zinc oxide (ZnO) nanoparticles (NPs) with the lyotropic phase comprises of Polyoxyethylene (20) sorbitan monolaurate and protic solvent ethylene glycol. The concentration of the NPs has been varying from 0.05 to 0.5 wt%. Multiwall lamellar and inverse phases have been observed at lower and higher concentration of ZnO NPs doping. Interestingly, the organization of ZnO NPs on the periphery and inside the periphery of ring-like structures has been observed at lower and higher concentration of the dopant, respectively. Such organization of the NPs can be explained considering interfacial interaction amid host and dopant and may also attribute to the adsorption mechanisms of surfactant. Effects of NPs doping on the dielectric dynamics has also been examined. About 32.6% decrease in the dielectric permittivity has been noticed at higher NPs doping. Such decrement in permittivity could be a result of the screening of the ZnO NPs dipole moment by the adsorption of surfactant molecules on their surface. Relaxation and optical parameters of the non-doped and doped mixtures have also been discussed.  相似文献   

8.
表面活性剂在溶液中聚集形态的动力学模拟   总被引:13,自引:1,他引:13  
用耗散颗粒动力学模拟方法(DPD)展示了表面活性剂分子在溶液中的聚集形态,用扩散程度表征了表面活性剂溶液中的自组装情况。结果发现:这种分子动力学模拟方法能够直观地得到表面活性剂的聚集形态;随着表面活性剂的浓度增加,聚集形态依次从球状胶束、棒状或虫状胶束,六角状相,向层状相变化。  相似文献   

9.
The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (ABA) melt, (3) triblock copolymer (ABA) solution with added electrolyte. For copolymer melts, we varied the composition (that is, the total fraction of A-segments in the system) and the charge density on A blocks and calculated the phase diagram that contains ordered mesophases of lamellar, gyroid, hexagonal, and bcc symmetries, as well as the uniform disordered phase. The phase diagram of charged block copolymer melts in the charge density--system composition coordinates is similar to the classical phase diagram of neutral block copolymer melts, where the composition and the Flory mismatch interaction parameter χ(AB) are used as variables. We found that the transitions between the polyelectrolyte mesophases with the increase of charge density occur in the same sequence, from lamellar to gyroid to hexagonal to bcc to disordered morphologies, as the mesophase transitions for neutral diblocks with the decrease of χ(AB). In a certain range of compositions, the phase diagram for charged triblock copolymers exhibits unexpected features, allowing for transitions from hexagonal to gyroid to lamellar mesophases as the charge density increases. Triblock polyelectrolyte solutions were studied by varying the charge density and solvent concentration at a fixed copolymer composition. Transitions from lamellar to gyroid and gyroid to hexagonal morphologies were observed at lower polymer concentrations than the respective transitions in the similar neutral copolymer, indicating a substantial influence of the charge density on phase behavior.  相似文献   

10.
The hexagonal columnar phase (HI) of an aqueous formulation of octyl β-glucoside with 67 % lipid content was modelled and 15-ns molecular dynamics simulation was performed. Initial investigations on the aggregation size led to good correlation of simulation and experimental d-spacing for a 12 molecule cylinder core. The corresponding hexagonal phase was stable over the entire simulation time and provided conclusive local density profiles. Hydrogen bonding analyses showed only minor differences in the bonding profile between the hexagonal and a previously reported micellar phase. However, the glycoside interaction decreases with increasing curvature, i.e. from a lamellar assembly over the hexagonal phase to the micelle, while the opposite behaviour applies for interactions with water. A view into the water dynamics revealed an anisotropic-correlated diffusion process with higher mobility along the cylinder axes than perpendicular to them.  相似文献   

11.
The synthesis of lamellar mesostructured Mg(OH)2 was achieved through a surfactant templating route. Amphiphilic compounds with different anionic headgroups (phosphate, sulfate, sulfonate, and carboxylate) were used as surfactants. Control of d spacing was achieved through the use of different alkyl carboxylate amphiphiles. It is proposed that the interaction between the highly reactive oxygen atoms of the anionic surfactants and the highly electrophilic Mg atom leads to the formation of high charge density at the interface between the surfactant molecules and the inorganic precursor. This interaction is very strong and the existence of strong bonds between the headgroup molecules of the surfactant and the Mg atom locks the structure in a preferred orientation, i.e., lamellar mesostructure. The strong interaction thus precludes any phase transformation, and only the lamellar phase of Mg(OH)2 is obtained. Calcination of the surfactant by heating in oxygen flow leads to the collapse of the lamellar mesophase and results in the formation of nonporous MgO.  相似文献   

12.
The phase separation of diblock copolymers containing some energetically neutral/biased nanoparticles is studied by means of large-scale dissipative particle dynamics (DPD) simulations. The effects of the volume fraction of nanoparticles, the size of nanoparticles, and the interaction strength between nanoparticles and blocks on the lamellar phase separation of diblock copolymers are investigated. When these effects are up to a critical value, the diblock copolymer nanocomposites can form a new bicontinuous morphology, which is well consistent with the experimental results. It is also found that the degree of order of phase separation for a given system increases slightly and then decreases abruptly until the bicontinuous morphology is formed as the volume fraction of nanoparticles increases. Furthermore, we discuss the microphase transition through the position distributions of nanoparticles and present a phase diagram in terms of the nanoparticle volume fraction, size, and surface interaction strength.  相似文献   

13.
卢宇源 《高分子科学》2017,35(7):874-886
We use a Monte Carlo method to study the phase and interfacial behaviors of A-b-B diblocks in a blend of homopolymers, A and B, which are confined between two asymmetric hard and impenetrable walls. Our results show that, when the interaction strength is weak, the block copolymersare uniformly distributed in the ternary mixtures under considered concentrations. Under strong interaction strength, distribution region of the block copolymers changes from a single smooth interface to a curved interface or multi-layer interface in the ternary mixtures. Furthermore, our findings show that with increasing volume fraction of A-b-B diblock copolymer(фC), copolymer profiles broaden while фC≥ 0.4, a lamellar phase is formed and by further increasing фC, more thinner layers are observed. Moreover, the results show that, with the increase of фC, the phase interface first gradually transforms from plane to a curved surface rather than micelle or lamellar phase while with the increase of the interaction between A and B segments(ε_(AB)), the copolymer chains not only get stretched in the direction perpendicular to the interface, but also are oriented. The simulations also revealthat the difference between symmetric and asymmetric copolymers is negligible in statistics if the lengths of two blocksare comparable.  相似文献   

14.
We consider a symmetrical poly(styrene- stat-(acrylic acid))- block-poly(acrylic acid), i.e., PSAA- b-PAA, diblock copolymer, with a molar fraction phi AA = 0.42 of acrylic acid, in the more hydrophobic PSAA statistical first block. We investigate its structural behavior at constant concentration in water using small-angle neutron scattering (SANS) by varying (i) the ionization of its acrylic acid motives via the pH by adding NaOH and (ii) the ionic strength of the solution by increasing the NaCl salt concentration c S. We present the resulting morphological phase diagram {pH, c S}, in which we identified two different lamellar phases presenting a smectic long-range order at small-to-intermediate ionizations and a spherical phase with a liquid-like short-range order at larger ionization. In the low-ionization regime, the first lamellar phase comprises a water-free PSAA lamellar core surrounded by a dense poly(acrylic acid) brush swollen with water. Its mostly hydrophobic core still being glassy, this phase is unable to reorganize and is frozen in. A detailed analysis of the SANS data shows the osmotic nature of the polyelectrolyte brush, in which the Na+ counterions are confined so that local electroneutrality is satisfied. Above the pH at which the PSAA statistical block starts ionizing, the PSAA lamellar core melts. The second lamellar phase identified then comprises a PSAA core thinner than that of the frozen-in previous phase, implying a significant increase of the core/water interface and a decrease of the brush surface density. The transition from the first lamellar phase to the second one can be quantitatively shown to result from the balance between the two contributions: (i) the extra interfacial cost between the thinner core and water and (ii) the associated gain in entropy of mixing for the counterions confined inside the brush. At even higher ionization, the diblocks finally form spherical objects with a very small, pH-dependent aggregation number and reach an apparent onset of self-association. When the highest ionization investigated is reached, the cores of these final spherical core-shell objects are found to contain a significant amount of water. We thereby demonstrate that at constant concentration, pH, and ionic strength both trigger a transition from frozen to molten hydrophobic phases as well as unexpected morphological transitions.  相似文献   

15.
We present a computer simulation study of binary mixtures of prolate Gay-Berne particles and Lennard-Jones spheres. Results are presented for three such rod-sphere systems which differ from each other only in the interaction between unlike particles. Both the mixing-demixing behavior and the transitions between the isotropic and any liquid crystalline phases are studied for each system, as a function of temperature and concentration ratio. For systems which show macroscopic demixing, the rod-sphere interaction is shown to give direct control over interfacial anchoring properties, giving rise to the possibility of micellar phase formation in the case of homeotropic anchoring. Additionally, it is shown that on incorporating high concentrations of spheres into a system of rods with weak demixing properties, microphase-separated structures can be induced, including bicontinuous and lamellar arrangements.  相似文献   

16.
The dynamics of alignment of microstructure in confined films of diblock copolymer melts in the presence of an external electric field was studied numerically. We consider in detail a symmetric diblock copolymer melt, exhibiting a lamellar morphology. The method used is a dynamic mean-field density functional method, derived from the generalized time-dependent Ginzburg-Landau theory. The time evolution of concentration variables and therefore the alignment kinetics of the morphologies are described by a set of stochastic equations of a diffusion form with Gaussian noise. We investigated the effect of an electric field on block copolymers under the assumption that the long-range dipolar interaction induced by the fluctuations of composition pattern is a dominant mechanism of electric-field-induced domain alignment. The interactions with bounding electrode surfaces were taken into account as short-range interactions resulting in an additional term in the free energy of the sample. This term contributes only in the vicinity of the surfaces. The surfaces and the electric field compete with each other and align the microstructure in perpendicular directions. Depending on the ratio between electric field and interfacial interactions, parallel or perpendicular lamellar orientations were observed. The time scale of the electric-field-induced alignment is much larger than the time scale of the surface-induced alignment and microphase separation.  相似文献   

17.
We study the phase behavior in water of a mixture of natural long chain fatty acids (FAM) in association with ethylenediamine (EDA) and report a rich polymorphism depending on the composition. At a fixed EDA/FAM molar ratio, we observe upon dilution a succession of organized phases going from a lamellar phase to a hexagonal phase and, finally, to cylindrical micelles. The phase structure is established using polarizing microscopy, SAXS, and SANS. Interestingly, in the lamellar phase domain, we observe the presence of defects upon dilution, which SAXS shows to correspond to intrabilayer correlations. NMR and FF-TEM techniques suggest that these defects are related to an increase in the spontaneous curvature of the molecule monolayers in the lamellae. ATR-FTIR spectroscopy was also used to investigate the degree of ionization within these assemblies. The successive morphological transitions are discussed with regards to possible molecular mechanisms, in which the interaction between the acid surfactant and the amine counterion plays the leading role.  相似文献   

18.
By the extensive large-scale nonequilibrium molecular dynamics simulation on an effective generic model-A2B2 tetramer for amphiphiles, we investigate the shear-induced parallel to perpendicular orientation transition in the lamellar phase as a function of segregation degree and shear rate. Under low rate shear flow the evolution of parallel lamellar configurations at different segregation strengths shows a similar kinetic pathway independent of the segregation degree. While under high rate shear flow in which the lifetime of undulation instability exceeds the characteristic time of the applied shear flow, the kinetic pathway of the shear-induced parallel-to-perpendicular orientation transition in lamellar systems is the segregation degree dependent. Comparing the temporal mesoscopic domain morphology, the microscopic chain conformation, and macroscopic observable-viscosity changes with the experimentally proposed mechanisms, we find that the undulation instability, partial breakup of monodomain, grain rotation, and recombination combined with defect migration and annihilation are the kinetic pathway for the parallel-to-perpendicular orientation transition in the lamellar phase in or near the intermediate segregation limit, and that the undulation instability, domain dissolution, and reformation along the preferred direction combined with defect migration and annihilation are the kinetic pathway for the parallel-to-perpendicular orientation transition in the lamellar phase close to the order-to-disorder phase transition point. A detailed underlying microscopic picture of the alignment process illustrates that the orientation transition is driven by the alignment of molecules with shear flow. The orientation diagram that characterizes the steady-state orientations as a function of shear rate and attractive potential depth is built, in which the attractive potential depth takes the role of an inverse temperature, somewhat like the Flory-Huggins interaction parameter. The microscopic mechanism of the critical orientation transition condition is discussed.  相似文献   

19.
We applied a molecular assembly formed in an aqueous surfactant mixture of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium octylsulfate (SOS) as templates of mesoporous silica materials. The hexagonal pore size can be controlled between 3.22 and 3.66 nm with the mixed surfactant system. In addition, we could observe the lamellar structure of the mixed surfactants with precursor molecules, which strongly shows the possibility of precise control of both the pore size and the structure of pores by changing the mixing ratio of surfactants. Moreover, use of the cationic surfactant having longer hydrophobic chain like stearyltrimethylammonium bromide (STAB) caused the increase in d(100) space and shifted the point of phase transition from hexagonal phase to lamellar phase to lower concentration of SOS.  相似文献   

20.
A phenomenological theory is presented to describe the nematic to lamellar phase transition in lyotropic liquid crystals. The problem of the first or second order transition is explored by means of the variation of the surfactant concentration. The possibility of the tricritical point at the nematic to lamellar phase transition is discussed in a phenomenological way. The influence of the electrolyte on this transition is also discussed by varying the coupling between the electrolyte concentration variables and the order parameters. The theoretical prediction is found to be in good qualitative agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号