首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
梁玉  张丽华  张玉奎 《色谱》2020,38(10):1117-1124
蛋白质组学研究在生物学、精准医学等方面发挥着重要的作用。然而研究面临的巨大挑战来自生物样品的复杂性,因此在质谱(MS)鉴定技术不断革新的同时,发展分离技术以降低样品复杂度尤为重要。毛细管电泳(CE)技术具有上样体积小、分离效率高、分离速度快等优势,其与质谱的联用在蛋白质组学研究中越来越受到关注。低流速鞘流液和无鞘流液接口的发展及商品化推动了CE-MS技术的发展。目前毛细管区带电泳(CZE)、毛细管等电聚焦(CIEF)、毛细管电色谱(CEC)等分离模式已与质谱联用,其中CZE-MS应用最广泛。目前被广泛采用的蛋白质组学研究策略主要是基于酶解肽段分离鉴定的"自下而上(bottom-up)"策略。首先,CE-MS技术对酶解肽段的检测灵敏度高达1 zmol,已成功应用于单细胞蛋白质组学;其次,毛细管电泳技术与反相液相色谱互补,为疏水性质相近的肽段(尤其是翻译后修饰肽段)的分离鉴定提供了新的途径。基于整体蛋白质分离鉴定的自上而下"top-down"策略可以直接获得更精准、更完整的蛋白质信息。CE技术在蛋白质大分子的分离方面具有分离效率高、回收率高的优势,其与质谱的联用提高了整体蛋白质的鉴定灵敏度和覆盖度。非变性质谱(native MS)是一种在近生理条件下从完整蛋白质复合物水平上进行分析的质谱技术。CE与非变性质谱联用已被尝试用于蛋白质复合体的分离鉴定。该文引用了与CE-MS和蛋白质组学应用相关的93篇文献,综述了以上介绍的CE-MS的研究进展以及在蛋白质组学分析中的应用优势,并总结和展望了其应用前景。  相似文献   

2.
Developments in the fields of protein chemistry, proteomics and biotechnology have increased the demand for suitable analytical techniques for the analysis of intact proteins. In 1989, capillary electrophoresis (CE) was combined with mass spectrometry (MS) for the first time and its potential usefulness for the analysis of intact (i.e. non-digested) proteins was shown. This article provides an overview of the applications of CE-MS within the field of intact protein analysis. The principles of the applied CE modes and ionization techniques used for CE-MS of intact proteins are shortly described. It is shown that separations are predominantly carried out by capillary zone electrophoresis and capillary isoelectric focusing, whereas electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are the most popular ionization techniques used for interfacing. The combination of CE with inductively coupled plasma (ICP) MS for the analysis of metalloproteins is also discussed. The various CE-MS combinations are systematically outlined and tables provide extensive overviews of the applications of each technique for intact protein analysis. Selected examples are given to illustrate the usefulness of the CE-MS techniques. Examples include protein isoform assignment, single cell analysis, metalloprotein characterization, proteomics and biomarker screening. Finally, chip-based electrophoresis combined with MS is shortly treated and some of its applications are described. It is concluded that CE-MS represents a powerful tool for the analysis of intact proteins yielding unique separations and information.  相似文献   

3.
The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium phosphate and ammonium borate on the MS signal of the proteins insulin, myoglobin, and bovine serum albumin (BSA) was investigated by employing infusion experiments, and compared to the effect of ammonium formate and formic acid. The study shows that with formic acid (50 mM, pH 2.4) the most intense protein signals were obtained, while the use of sodium phosphate buffer (5 and 10 mM, pH 7.5) almost completely diminished the MS response. Ammonium formate and ammonium borate (up to 100 mM, pH 8.5) also caused protein ion suppression, but especially with the borate buffer significant MS intensity remained. MS analysis of myoglobin revealed the loss of the heme group when an acidic CE electrolyte was used. Using a background electrolyte containing 25 mM ammonium borate (pH 8.5), it is demonstrated that a CE separation of a protein test mixture can be monitored with ESI-MS without degrading the MS performance allowing molecular weight determinations of the separated compounds. In the presence of borate, detection limits were estimated to be 5-10 microM (ca. 100 fmol injected). The usefulness of the CE-MS system employing a borate buffer is indicated by the analysis of a stored sample of BSA revealing several degradation products. A sample of placental alkaline phosphatase (PLAP), a potential therapeutic agent, was also analyzed by CE-MS indicating the presence of a protein impurity. Probably due to insufficient ionization of the PLAP (a complex glycoprotein), no MS signals of the intact protein were observed.  相似文献   

4.
Mass spectrometry (MS) has become a key tool for the characterization of biologically relevant molecules in the last decade. Due to the complexity of most biological samples an upstream separation is essential. Capillary electrophoresis (CE) has gained much interest due to its high separation efficiency, speed, and often complementary selectivity to liquid chromatography. We describe the state-of-the-art of on-line CE-MS for the analysis of molecules of biological origin. The characterization of peptides, including the study of post-translational modifications, intact proteins, oligonucleotides, and related interaction studies are reviewed. Relevant publications are summarized in tables, including some important method parameters. Key applications are discussed with respect to the advantages and limitations of CE-MS. Coupling interfaces, preconcentration techniques, capillary coatings, and the different CE techniques, e.g., capillary zone electrophoresis, capillary isoelectric focusing, capillary gel electrophoresis, etc. are briefly discussed against the background of their bioanalytical applications.  相似文献   

5.
Moini M  Huang H 《Electrophoresis》2004,25(13):1981-1987
We introduce capillary electrophoresis-mass spectrometry (CE-MS) as an efficient means for the on-line separation and identification of protein mixtures. It was found that while CE/electrospray ionization (ESI)-MS analysis of whole-cell lysate was too complicated for the one-dimensional CE-MS analysis, the technique was useful for the analysis of protein mixtures of moderate complexity (approximately 50 intact proteins). CE/ESI-MS was applied to the subcellular proteomics of ribosomal Escherichia coli. 55 out of the 56 ribosomal proteins were detected with ease by using only approximately 3.4 ng of ribosomal proteins. In addition, it was found that the mass accuracy of the conventional MS (such as quadrupole ion traps) was good enough to identify many post-translational modifications of the intact proteins by simply comparing their measured average molecular weight with the average molecular weight predicted from gene banks.  相似文献   

6.
Protein glycosylation can impact the efficacy, safety, and pharmacokinetics of therapeutic proteins. Achieving uniform and consistent protein glycosylation is an important requirement for product quality control at all stages of therapeutic protein drug discovery and development. The development of a new microfluidic CE device compatible with MS offers a fast and sensitive orthogonal mode of high-resolution separation with MS characterization. Here, we describe a fast and robust chip-based CE-MS method for intact glycosylation fingerprinting of a therapeutic fusion protein with complex sialylated N and O-linked glycoforms. The method effectively separates multiple sialylated glycoforms and offers a rapid detection of changes in glycosylation profile in 6 min.  相似文献   

7.
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product‐ and time‐consuming. CE‐MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off‐line CE‐UV/MALDI‐MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI‐MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI‐MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE‐UV/MALDI‐MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.  相似文献   

8.
The depository effects that occur in slowly metabolized proteins (typically glycation) are very difficult to assess, owing to their extremely low concentration in the protein matrix. Collagen accumulates reactive metabolites through reactions that are not regulated by enzymes. A typical example of these non-enzymatic changes is glycation (the Maillard reaction, the formation of advanced glycation end products), resulting from the reaction of the oxo-group of sugars with the epsilon-amino group of lysine and arginine. Collagen samples (type I) as a test protein were incubated separately with glucose, ribose and malondialdehyde. Collagen was fragmented with cyanogen bromide and then digested with trypsin. This peptide digest was separated by CE, CE-MS/MS, and HPLC-MS/MS. An ion trap MS was used and MS conditions were optimized for both methods. These on-line CE-MS/MS and HPLC-MS/MS couplings made it possible to discover specific modifications such as (N(epsilon)-(carboxymethyl)-lysine) in the precise location in the structure of collagen corresponding to posttranslational non-enzymatic modifications. A new CE-MS/MS technique for peptide analysis was developed, and applied in the identification of posttranslational modifications in slowly metabolized test proteins.  相似文献   

9.
Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45–90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides. By analysis of a model peptide (leucine enkephalin), a limit of detection (LOD) of 0.045 pmol/μL (corresponding to 67 attomol in a sample volume of ∼15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (73%) compared to a representative UPLC-MS method (77%). The CE-MS interface was subsequently used to analyse a more complex sample of pharmaceutically relevant human proteins including insulin, tissue factor and α-synuclein. Efficient separation and protein ESI mass spectra of adequate quality could be achieved using only a small amount of sample (30 fmol). In addition, analysis of ubiquitin samples under both native and denatured conditions, indicate that the CE-MS setup can facilitate native MS applications to probe the conformational properties of proteins. Thus, the described CE-MS setup should be useful for a wide range of high-sensitivity applications in protein research.  相似文献   

10.
Erny GL  Marina ML  Cifuentes A 《Electrophoresis》2007,28(22):4192-4201
In this work, an original CE-MS method has been developed to analyze the complex zein protein fractions from maize. A thorough optimization of: (i) zein protein extraction, (ii) CE separation, and (iii) electrospray-MS (ESI-MS) detection is carried out in order to obtain highly informative CE-MS profiles of this fraction. The developed CE-MS method provides good separation of multiple zein proteins based on their electrophoretic mobilities as well as adequate characterization of these proteins based on their M(r). Zein proteins with small M(r) differences (below 100 Da) were easily separated and successfully analyzed by CE-MS. Thus, apart of the so-called 15-kDa-beta-zein and 16-kDa-gamma-zein, which are demonstrated to be formed by a heterogeneous group of proteins, numerous alpha-zeins belonging to the 19- and 22-kDa fraction were also identified for the first time in this work. The usefulness of this CE-MS method was corroborated by comparing the zein-protein fingerprints of various maize lines including transgenic and their corresponding nontransgenic isogenic lines cultivated under the same conditions.  相似文献   

11.
Capillary electrophoresis (CE) mass spectrometry (MS), with its ability to separate compounds present in extremely small volume samples rapidly, with high separation efficiency, and with compound identification capability based on molecular weight, is an extremely valuable analytical technique for the analysis of complex biological mixtures. The highest sensitivities and separation efficiencies are usually achieved by using narrow capillaries (5-50 micro m i.d.) and by using sheathless CE-to-MS interfaces. The difficulties in CE-to-MS interfacing and the limited loadability of these narrow columns, however, have prevented CE-MS from becoming a widely used analytical technique. To remedy these limitations, several CE-MS interfacing techniques have recently been introduced. While electrospray ionization is the most commonly used ionization technique for interfacing CE-to-MS, matrix assisted laser desorption ionization has also been used, using both on-line and off-line techniques. Moreover, the high concentration detection limit of CE has been addressed by development of several sample concentration and sample focusing methods. In addition, a wide variety of techniques such as capillary zone electrophoresis, capillary isoelectric focusing, and on-column transient isotachophoresis have now been interfaced to MS. These advances have resulted in a rapid increase in the use of CE-MS in the analysis of complex biological mixtures. CE-MS has now been successfully applied to the analysis of a wide variety of compounds including amino acids, protein digests, protein mixtures, single cells, oligonucleotides, and various small molecules relevant to the pharmaceutical industry.  相似文献   

12.
To simplify capillary electrophoresis-mass spectrometry (CE-MS) operation, a background electrolyte (BGE) containing a polymer additive is introduced that allows the analysis of peptides and protein mixtures in underivatized fused-silica capillaries without any pretreatment, thereby increasing throughput. The most important characteristic of these polymer additives is that they do not significantly suppress the signals of the proteins and peptides under electrospray ionization, thereby allowing them to be used as an additive to common BGEs that are used for CE-MS analysis of peptide and protein mixtures. In addition, because the fused-silica capillary inner wall is continuously coated with the polymer additive, migration irreproducibility, due to the degradation of the capillary inner wall coating, under CE-MS is minimized. High sensitivity of detection, migration reproducibility, and ease of fabrication allow CE-MS analyses that require long analysis time, such as (CE-MS/MS)n, to be performed with ease. The utility of this background electrolyte has been demonstrated for the analysis of complex protein digests and intact proteins.  相似文献   

13.
Volpi N  Maccari F  Linhardt RJ 《Electrophoresis》2008,29(15):3095-3106
Complex natural polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules that exhibit a wide range of biological functions and participate and regulate multiple cellular events and (patho)physiological processes. They are generally present either as free chains (hyaluronic acid and bacterial acidic polysaccharides) or as side chains of proteoglycans (PGs; chondroitin/dermatan sulfate, heparin/heparan sulfate, and keratan sulfate) and are most often found in cell membranes and in the extracellular matrix. The recent emergence of modern analytical tools for their study has produced a virtual explosion in the field of glycomics. CE, due to its high resolving power and sensitivity, has been useful in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides affording concentration and structural characterization data essential for understanding the biological functions of GAGs. In this review, novel off-line and on-line CE-MS and MS/MS methods for screening of GAG-derived oligosaccharides and disaccharides will be discussed.  相似文献   

14.
The potential of capillary electrophoresis (CE) for the separation of peptides has been extensively demonstrated in the last decade. Their correct characterization and sequenciation is a difficult task that can be accomplished using CE-mass spectrometry (CE-MS). An important limitation of CE-MS is the buffer choice since it should provide an adequate CE separation without ruining the MS signal. In this work, a new strategy is used to help to solve this limitation based on the combination of two different methodologies. Namely, an ab initio semiempirical model that relates electrophoretic behavior of peptides to their sequence is first used to obtain in a fast and easy way adequate CE buffers compatible with MS analysis. Next, CE-MS is used to separate and characterize peptides via the determination of their relative molecular masses. The usefulness of this procedure is demonstrated analyzing in a single CE-MS run a group of 10 standard peptides of very different nature (i.e., relative molecular masses ranging from 132 to 1037 and isoelectric points ranging from 5.69 to 10.62). It is concluded that the use of this strategy can help to overcome the buffer limitation in CE-MS.  相似文献   

15.
This review is focused on the capillary electrophoresis-mass spectrometric (CE-MS) analysis of nucleic acid constituents in the broadest sense, going from nucleotides and adducted nucleotides over nucleoside analogues to oligonucleotides. These nucleic acid constituents play an important role in a variety of biochemical processes. Hence, their isolation, identification, and quantification will undoubtedly help reveal the process of life and disease mechanisms, such as carcinogenesis, and can also be useful for antitumor and antiviral drug research to provide valuable information about mechanism of action, pharmacokinetics, pharmacodynamics, toxicity, therapeutic drug level monitoring, and quality control related to this substance class. Fundamental investigations into their structure, the search for modifications, the occurrence and biochemical impact of structural variation amongst others, are therefore of great value. In view of the related bioanalytical procedures, the coupling of CE to MS has emerged as a powerful tool for the analysis of the complex mixtures of nucleic acid constituents: CE confers rapid analysis and efficient resolution, while MS provides high selectivity and sensitivity with structural characterization of minute amounts of compound. After an introduction about the biochemical and analytical perspectives on the nucleic acid constituents, the different modes of CE used in this field of research as well as the relevant CE-MS interfaces and the difficulties associated with quantitative CE-MS are briefly discussed. A large section is finally devoted to field-oriented applications.  相似文献   

16.
The separation and characterization of human apolipoproteins and their isoforms was investigated using capillary electrophoresis (CE) in combination with mass spectrometry (MS). The focus of these analyses was the major protein constituents of plasma high-density lipoproteins, apolipoprotein A-I and A-II. Using aqueous buffers in CE, no separation between apolipoprotein A-I and A-II was observed. With the addition of 10-20% acetonitrile, however, the two species could be separated. Furthermore, multiple peaks for each of the apolipoprotein species were observed under these CE conditions. In order to identify and characterize the components, these separations were then coupled with online mass spectrometric detection (CE-MS). Our CE-MS results suggest that the multiple components observed in the acetonitrile-containing CE separation appear to be oxidized forms of the proteins in addition to native forms of the apolipoprotein A-I and A-II. These data are in agreement with previous reports that the methionine residues of the high-density lipoproteins (HDLs) are sensitive to oxidation, which in turn, alters their lipid binding characteristics and secondary structure. In addition to oxidized forms of the proteins, apolipoprotein A-II contained additional components, which varied in mass by 128 Da. The structural differences between these components were determined by proteolytic digestion and tandem MS. Using these techniques, we determined that these components were due to truncation of the C-terminal glutamine amino acid residue on apolipoprotein A-II. These results demonstrate that CE in combination with MS is a promising technique for screening and characterizing isomers of plasma apolipoproteins.  相似文献   

17.
The feasibility of using noncovalently bilayer-coated capillaries for capillary electrophoresis-mass spectrometry (CE-MS) of acidic proteins was investigated using background electrolytes (BGEs) of medium pH. The capillary was coated by successively rinsing the capillary with solutions of the oppositely charged polymers polybrene (PB) and poly(vinyl sulfonic acid) (PVS). Volatile BGEs containing ammonium formate and/or N-methyl morpholine were tested at pH 7.5 and 8.5. Overall, these BGEs provided relatively fast protein separations (analysis times of ca. 12 min) and showed high efficiencies (70,000-300,000 plates) when the ionic strength was sufficiently high. Migration-time reproducibilities were very favorable with RSDs of less than 1.0%. Infusion experiments showed satisfactory MS responses for studied proteins dissolved in ammonium formate (pH 8.5), however, high concentrations of N-methyl morpholine appeared to seriously suppress the MS protein signals. Evaluation of the CE-MS system was performed by analyzing a mixture of intact proteins yielding efficient separations and good-quality mass spectra. CE-MS analysis of a reconstituted formulation of the biopharmaceutical recombinant human growth hormone (rhGH) which was stored for a prolonged time, revealed one degradation product which was provisionally identified as desamido rhGH. Based on the MS responses the amount of degradation was estimated to be ca. 25%.  相似文献   

18.
CE-MS is a successful proteomic platform for the definition of biomarkers in different body fluids. Besides the biomarker defining experimental parameters, CE migration time and molecular weight, especially biomarker's sequence identity is an indispensable cornerstone for deeper insights into the pathophysiological pathways of diseases or for made-to-measure therapeutic drug design. Therefore, this report presents a detailed discussion of different peptide sequencing platforms consisting of high performance separation method either coupled on-line or off-line to different MS/MS devices, such as MALDI-TOF-TOF, ESI-IT, ESI-QTOF and Fourier transform ion cyclotron resonance, for sequencing indicative peptides. This comparison demonstrates the unique feature of CE-MS technology to serve as a reliable basis for the assignment of peptide sequence data obtained using different separation MS/MS methods to the biomarker defining parameters, CE migration time and molecular weight. Discovery of potential biomarkers by CE-MS enables sequence analysis via MS/MS with platform-independent sample separation. This is due to the fact that the number of basic and neutral polar amino acids of biomarkers sequences distinctly correlates with their CE-MS migration time/molecular weight coordinates. This uniqueness facilitates the independent entry of different sequencing platforms for peptide sequencing of CE-MS-defined biomarkers from highly complex mixtures.  相似文献   

19.
Taichrib A  Pioch M  Neusüss C 《Electrophoresis》2012,33(9-10):1356-1366
Capillary electrophoresis-mass spectrometry (CE-MS) more and more gains in importance as an analytical technique for the identification and characterization of intact proteins in the biopharmaceutical area. Thus, a CE-ESI-MS method was optimized and validated systematically with respect to the improved screening and characterization of intact proteins. The optimization was accomplished by variation of different CE-MS parameters, such as capillary coating, background electrolyte, sheath liquid, and nebulizer gas pressure, while monitoring both the resolution and signal intensities. Achievable separation is discussed quantitatively in the context of the coating and the resulting EOF, the protein mobilities, and the suction effect of the sprayer. The observed precisions of the optimized method regarding the migration times (mean RSD = 1.4%) and peak areas (mean RSD = 12.3%) and an extensive principal component analysis revealed that the presented method is reliable and useful for the quantitation of intact proteins and protein isoforms. The applicability of this method to various proteins showing different characteristics (pI value, molecular mass, hydrophobicity, etc.) is discussed. The presented method will contribute to the improved characterization of a large variety of intact proteins in the biomedical and pharmaceutical area.  相似文献   

20.
In the present work, an exhaustive review of the main developments and applications of CE-MS for peptide analysis is given. This review includes the use of different CE separation modes, MS analyzers, capillary coatings, preconcentration techniques, on-chip applications as well as other different multidimensional strategies for peptide analysis. Key applications are critically discussed and relevant works published from January 2000 to May 2007 are summarized including information concerning the type of sample, CE-MS parameters as well as some figures of merit of the different CE-MS procedures developed for peptide analysis and peptidomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号