首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

2.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, sensitive and specific method using ultraperformance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) was developed to determine sunitinib and N‐desethyl sunitinib in mouse plasma and tissues. The analytes were separated by an isocratic mobile phase consisting of acetonitrile and buffer solution (water with 0.1% formic acid and 5 m m ammonium acetate; 40: 60, v/v) running at a flow rate of 0.35 mL/min for 2 min. Quantification was performed using a mass spectrometer by multiple reaction monitoring in positive electrospray ionization mode. The transition was monitored at m/z 399 → 283, m/z 371 → 283 and m/z 327 → 270 for sunitinib, N‐desethyl sunitinib and internal standard, respectively. Calibration curves were linear over concentration ranges of 2–500, 0.5–50 and 1–250 ng/mL for plasma, heart and other biosamples. The method was successfully applied to animal experiments. The pharmacokinetic study indicated that sunitinib was eliminated quickly in mice with a half‐life of 1.2 h; tissue distribution data showed more sunitinib and its metabolite in liver, spleen and lung, which provided reference for further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, simple and sensitive UHPLC‐MS/MS method was developed and validated for the simultaneous determination of brucine, strychnine and brucine N‐oxide in rat plasma using huperzine A as an internal standard (IS) after protein precipitation with methanol. The analytes were separated on a Purospher® STAR RP18 UHPLC column (2 µm, 2.1 × 100 mm) by gradient elution using a mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.3 mL/min. Brucine, strychnine, brucine N‐oxide and IS were detected in positive ion multiple reaction monitoring mode by means of an electrospray ionization interface (m/z 395.2 → 324.1, m/z 335.2 → 184.1, m/z 411.2 → 394.2, m/z 243.1 → 226.1). The calibration curve was linear over the range of 1–500 ng/mL for brucine and strychnine and 0.2?50 ng/mL for brucine N‐oxide. The intra‐ and inter‐day precisions of these analytes were all within 15% and the accuracy ranged from 85 to 115%. The stability experiment indicated that the plasma samples at three concentration levels were stable under different conditions. The developed method was successfully applied for the first time to pharmacokinetic studies of brucine, strychnine and brucine N‐oxide following a single oral and intravenous administration of modified total alkaloid fraction in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

6.
LC‐ ESI‐ MS/MS simultaneous bioanalytical method was developed to determine acitretin and its metabolite isoacitretin in human plasma using acitretin‐d3 used as the internal standard for both analytes. The compounds were extracted using protein precipitation coupled with liquid–liquid extraction with flash freezing technique. Negative mass transitions (m/z) of acitretin, isoacitretin and acitretin‐d3 were detected in multiple reactions monitoring (MRM) mode at 325.4 → 266.3, 325.2 → 266.1 and 328.3 → 266.3, respectively, with a turbo ion spray interface. The chromatographic separation was achieved on an Ascentis‐RP amide column (4.6 × 150 mm, 5 µm) with mobile phase delivered in isocratic mode. The method was validated over a concentration range of 1.025–753.217 ng/mL for acitretin and 0.394–289.234 ng/mL for isoacitretin with a limit of quantification of 1.025 and 0.394 ng/mL. The intra‐day and inter‐day precisions were below 8.1% for acitretin and below 13.8% for isoacitretin, while accuracy was within ±7.0 and ±10.6% respectively. For the first time, the best possible conditions for plasma stability of acitretin and isoacitretin are presented and discussed with application to clinical samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A bioanalytical method was developed and validated to estimate donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil simultaneously in human plasma using galantamine as an internal standard (IS). The chromatographic separation was achieved on a reverse‐phase XTerra RP (150 × 4.6 mm, 5 µm) column without affecting recovery (mean recovery > 60% with CV < 10%) for all analytes. ESI‐MS/MS multiple reaction monitoring in positive polarity was used to detect mass pairs for donepezil (m/z 380.3 → 91.3), 6‐desmethyl donepezil (m/z 366.4 → 91.3), 5‐desmethyl donepezil (m/z 366.4 → 91.3) and galantamine m/z (288.1 → 213.0). The linearity was established over a dynamic range of 0.339–51.870, 0.100–15.380 and 0.103–15.763 ng/mL for donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil, respectively. The current method shows that minimal conversion of labile metabolites to parent donepezil in plasma as stability was successfully achieved for 211 days at ?15 °C storage temperature. The method was successfully applied to a clinical study after administration of 10 mg donepezil tablets to healthy male Indian volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A selective and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for investigating the pharmacokinetics of umbelliferone, apigenin, genkwanin and hydroxygenkwanin after oral administration of Daphne genkwa extract. Plasma samples were treated by protein precipitation with acetonitrile. Analytes were detected by triple‐quadrupole MS/MS with an ESI source in negative selection reaction monitoring mode. The transitions of m/z 161 → 133 for umbelliferone, m/z 269 → 117 for apigenin, m/z 283 → 268 for genkwanin and m/z 299 → 284 for hydroxygenkwanin were confirmed for quantification. Chromatographic separation was conducted using an Eclipse XDB‐C18 column, and the applied isocratic elution program allowed for simultaneous determination of the four analytes for a total run time of 2.5 min. The linearity was validated over the plasma concentration ranges of 1.421–1421 ng/mL for umbelliferone, 0.845–845 ng/mL for apigenin, 1.025–1025 ng/mL for genkwanin and 0.845–845 ng/mL for hydroxygenkwanin. The extraction recovery rate was >82.7% for each analyte. No apparent matrix effect was observed during the bioanalysis. After full validation, the proposed method was successfully applied to compare the pharmacokinetics of these analytes between normal and arthritic rats.  相似文献   

11.
A specific and sensitive LC‐MS/MS assay was developed to simultaneously quantify three structurally similar flavonoid glycosides – hyperin, reynoutrin and guaijaverin – in mouse plasma. Biosamples were prepared by solid‐phase extraction. Isocratic chromatographic separation was performed on an AichromBond‐AQ C18 column (250 × 2.1 mm, 5 μm) with methanol–acetonitrile–water–formic acid (20:25:55:0.1) as the mobile phase. Detection of hyperin, reynoutrin, guaijaverin and internal standard [luteolin‐7‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranoside] was achieved by ESI‐MS/MS in the negative ion mode using m/z 463 → m/z 300, m/z 433 → m/z 300, m/z 433 → m/z 300 and m/z 579 → m/z 285 transitions, respectively. Linear concentration ranges of calibration curves were 4.0–800.0 ng/mL for hyperin and reynoutrin and 8.0–1600.0 ng/mL for guaijaverin when 100 μL of plasma was analyzed. We used this validated method to study the pharmacokinetics of hyperin, reynoutrin and guaijaverin in mice following oral and intravenous administration. All three quercetin‐3‐O‐glycosides showed poor oral absorption in mice, and the absolute bioavailability of hyperin after oral administration of 100 mg/kg was 1.2%. Pretreatment with verapamil increased the peak concentration and area under the concentration–time curve of hyperin, which were significantly higher than the control values. The half‐life of hyperin with verapamil was significantly prolonged compared with that of the control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Nitazoxanide (NTZ) is a broad‐spectrum antimicrobial agent. Tizoxanide (T) and tizoxanide glucuronide (TG) are the major circulating metabolites after oral administration of NTZ. A rapid and specific LC–MS/MS method for the simultaneous quantification of T and TG in mouse plasma was developed and validated. A simple acetonitrile‐induced protein precipitation method was employed to extract two analytes and the internal standard glipizide from 50 μL of mouse plasma. The purified samples were resolved using a C18 column with a mobile phase consisting of acetonitrile and 5 mm ammonium formate buffer (containing 0.05% formic acid) following a gradient elution. An API 3000 triple quadrupole mass spectrometer was operated under multiple reaction‐monitoring mode with electrospray ionization. The precursor‐to‐product ion transitions m/z 264 → m/z 217 for T and m/z 440 → m/z 264 for TG were used for quantification. The developed method was linear in the concentration ranges of 1.0–500.0 ng/mL for T and 5.0–1000.0 ng/mL for TG. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentrations exhibited an RSD of <13.2% and the accuracy values ranged from ?9.6 to 9.3%. We used this validated method to study the pharmacokinetics of T and TG in mice following oral administration of NTZ. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
An ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid–liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r2 > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r2 > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra‐day and inter‐day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid–liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid and sensitive high‐performance LC‐MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid‐liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass‐to‐charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2–100/0.5–250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC‐MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.  相似文献   

15.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In the present study, the development and validation of an LC‐MS/MS method for quantifying mefenamic acid in human plasma is described. The method involves liquid–liquid extraction using diclofenac as an internal standard (IS). Chromatographic separation was achieved on a Thermo Hypurity C18, 50 × 4.6 mm, 5 µm column with a mobile phase consisting of 2 m m ammonium acetate buffer and methanol (pH 4.5 adjusted with glacial acetic acid; 15:85, v/v) at a flow‐rate of 0.75 mL/min and the total run time was 1.75 min. Analyte was introduced to the LC‐MS/MS using an atmospheric pressure ionization source. Both the drug and IS were detected in negative‐ion mode using multiple reaction monitoring m/z 240.0 → 196.3 and m/z 294.0 → 250.2, respectively, with a dwell time of 200 ms for each of the transitions. The standard curve was linear from 20 to 6000 ng/mL. This assay allows quantification of mefenamic acid at a concentration as low as 20 ng/mL in human plasma. The observed mean recovery was 73% for the drug. The applicability of this method for pharmacokinetic studies has been established after successful application during a 12‐subject bioavailibity study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous determination of silodosin (SLD) and its active metabolite silodosin β‐d ‐glucuronide (KMD‐3213G) in human plasma. Liquid–liquid extraction of plasma samples was carried out with ethyl acetate and methyl tert‐butyl ether solvent mixture using deuterated analogs as internal standards. The extraction recoveries of SLD and KMD‐3213G were in the ranges 90.8–93.4 and 87.6–89.9%, respectively. The extracts were analyzed on a Symmetry C18 (50 × 4.6 mm, 5 μm) column under gradient conditions using 10 mm ammonium formate in water and methanol–acetonitrile (40:60, v/v), within 6.0 min. For MS/MS measurements, ionization of the analytes was carried out in the positive ionization mode and the transitions monitored were m/z 496.1 → 261.2 for SLD and m/z 670.2 → 494.1 for KMD‐3213G. The method showed good linearity, accuracy, precision and stability in the range 0.10–80.0 ng/mL for SLD and KMD‐3213G. The IS‐normalized matrix factors obtained were highly consistent, ranging from 0.962 to 1.023 for both analytes. The method was used to support a bioequivalence study of SLD and its metabolite in healthy volunteers after oral administration of 8 mg silodosin capsules.  相似文献   

18.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号