首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A metal-silicate extraction technique combined with neutron activation analysis has been developed to determine molybdenum in geological samples. The samples are equilibrated with Femetal powder at high temperatures. Molybdenum is completely extracted into the metal phase because of very reducing conditions in the furnace. The metal spherule is separated from the silicates, irradiated and dissolved in an acid solution. The molybdenum is precipitated as a sulfide and the precipitate is dissolved in aqua regia and counted on a Ge/Li/detector. The radiochemical yield is obtained by irradiation of the solution. The method avoids production of99Mo from induced fission of235U by performing the metal-silicate separation before irradiation. The precipitation step may be necessary to remove the high background from the decay of59Fe. Mo concentrations down to 15 ng/g have been obtained using this method.  相似文献   

2.
The radioisotope99Mo was separated from a mixture of235U fission products in the presence of Hg2+ by sorption on a chromatographic column filled with Al2O3 and elution with 1M NH4OH. Trace impurities of131I in the molybdenum fraction were eliminated by selective sorption on silver iodide or by repeated sorption of99Mo on Al2O3.  相似文献   

3.
The use of the 99Mo99mTc generator in nuclear medicine is well established world wide. The production of the 99Mo (T1/2 = 66 h) parent as a fission product of 235U is largely based on the use of reactor technology. From the early 1990's accelerator based production methods to provide either direct produced 99mTc or the parent 99Mo, were studied and suggested as potential alternatives to the reactor based production of 99Mo. A possible pathway for the charged particle production of 99mTc and 99Mo is irradiation of molybdenum metal with protons via the reaction 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo, respectively. The earlier published excitation functions show large differences in their maximum that result in large differences in the calculated yields. We therefore decided to study the excitation function for these proton-induced reactions. In this work the newly measured excitation functions as well as an evaluation of earlier measured data and a discussion of the observed disagreements are presented.  相似文献   

4.
A radiochemical method to isolate99Mo from132Te, both produced in the fission of235U, has been developed. The method is based on the formation of a cationic complex of tellurium with thiourea in acid medium which is retained (98.7±0.5)% on a cation exchange resin (Dowex 50W-X8, 100–200 mesh), while (99.8±0.05)%99Mo passes through it, due to the non-formation of such complex in the same experimental conditions. The radionuclidic purity of99Mo was found to be suitable for the preparation of99Mo–99mTc generators. The retention of99Mo on an alumina column as a function of pH was investigated and the best pH range for this purpose was found to be 4.0–4.5.  相似文献   

5.
In Argentina, at the Ezeiza Atomic Center,131I is produced by wet distillation of natural tellurium dioxide irradiated with thermal neutrons in a pool-type reactor. In order to recover the131I present in the production process of fission99Mo obtained by irradiation of UALx/Al targets (with 90% enriched uranium) a separation method was developed. Iodine isotopes can be separated from a sodium hydroxide solution containing fission products using a column filled with alternate beds of glass microspheres and porous metal silver. Tests with tracers were performed in radiochemical laboratory. Following this results, a series of tests with higher activities (3 TBq of99Mo and 0.7 TBq of131I) were carried out in hot cells. Molybdenum passes through the silver column, while131I retention was 92–97% in tracer test and 90% in optimised hot cell tests. This result depends on several facts that are discussed. An initial separation of iodine isotopes diminishes radiation damage on ion-exchange resin used in the subsequent molybdenum purification, improving its retention and elution yield.  相似文献   

6.
A new technique for the separation of99mTc from low specific activity99Mo is reported. A separation based on the principle of precipitation of99Mo as calcium molybdate has been investigated. On precipitating99MoO 4 2– from alkaline solution as calcium molybdate under controlled conditions, the99mTcO 4 is found to remain quantitatively in the supernatant solution with little carry-over of99Mo. This calcium molybdate (99Mo) could be redissolved and reprecipitated at regular intervals, yielding99mTc quantitatively in aqueous neutral solutions. Calcium molybdate precipitates containing up to 1.5 GBq of99Mo and 130–180 mg of molybdenum were prepared and evaluated. The performance in terms of repeated99mTc separation gave yields of 75–93% with acceptable readionuclidic and radiochemical purity.  相似文献   

7.
The subject of this paper is to explore the possibility to obtain 99mTc from activation of 98Mo, using the TRIGA Mark II low flux research reactor (Vienna, Austria). Irradiation of both natural and enriched in 98Mo molybdenum oxides was compared. Aims of this work included the determination of neutron fluxes and 98Mo(n, γ)99Mo reaction effective cross section in the TRIGA Mark II reactor irradiation channels, calculation of 99Mo specific activities, determination of optimal irradiation conditions for the subsequent 99mTc separation from MoO3 targets using concentrating technologies.  相似文献   

8.
Biosorption of 241Am by immobilized Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
More than half of the world's annual production of radionuclides is used for medical purposes such as diagnostic imaging of diseases and patient therapy. Using aqueous homogeneous solution reactor technology, production quantities of medical radioisotopes 99Mo and89Sr, can be extracted from one reactor cycle. 99Mo may be produced directly from UO2SO4 uranyl sulfate in an aqueous homogeneous solution nuclear reactor in a manner that produces high purity radionuclides, making efficient use of the reactor's uranium fuel solution. The process is relatively simple, economical, and waste free, eliminating uranium targets. The short-lived radioisotope 99mTc is eluted from 99Mo for diagnostic imaging. Radioisotope 89Sr infusion is a therapeutic modality that reduces reliance on narcotic analgesia through palliation of metastatic bone pain caused by metastases of the cancer to the bone. Painful disseminated osseous metastases are common with carcinomas of the lung, prostate, and breast. Synergistic interleaving of two manufacturing processes, one producing 99Mo and another producing 89Sr in the same production cycle of an aqueous homogeneous solution reactor makes full and efficient use of the time for both the neutron irradiation stage and the extraction stage of each radionuclide. Interleaving the capture of 89Sr radioisotope with production processing of 99Mo radioisotope is achieved, since the extraction and subsequent elimination of radionuclide impurities occurs during separate parts of the reactor cycle. The process applies to either HEU or LEU nuclear fuels in an aqueous homogeneous solution reactor.  相似文献   

9.
A study of the isotope exchange reaction U(III)org/U(IV)aq in the extraction system: 7M HCl — tributyl phosphate (TBP) — toluene has been performed. For 20 s of contact the results show a separation factor235U/238U of 1.014. This large separation factor is explained by the oxidation reaction of235U(III) and238U(III).  相似文献   

10.
A method for the determination of molybdenum and tungsten in plant material using neutron activation analysis was developed. The considered reaction are: $$\begin{gathered} {}^{98}Mo(n,\gamma )^{99} Mo \hfill \\ {}^{186}W(n,\gamma )^{187} W \hfill \\ \end{gathered} $$ The separation for tungsten and molybdenum was carried out using anion exchange separation (Dowex 1×10; 200–400 mesh). Irradiation was carried out in a swimming pool reactor at a thermal flux of about 1–2×1013 n·cm?2·sec?1 for 15 hours. The samples and standard were allowed to cool for 5–6 hours before chemical processing. the high concentration of calcium in plants (up to 40 mg/g dry material), the use of hydrofluoric acid for a good absorption and quantitative recovery of tungsten led us to dissolve the samples with Ht?H2O2 mixtures containing boric acid to prevent the precipitation of fluorides.  相似文献   

11.
This paper describes the preparation of samples for an experiment to measure the cross-section for 235U(n,n′)235mU in a fast fission spectrum of neutrons provided by a fast pulsed reactor/critical assembly. Samples of 235mU have been prepared for the calibration of the internal conversion electron detector that is used for the 235mU measurement. Two methods are described for the preparation of 235mU. The first method used a U-Pu chemical separation based on anion-exchange chromatography and the second method used an alpha recoil collection method. Thin, uniform samples of 235mU+235U were prepared for the experiment using electrodeposition.  相似文献   

12.
Cumulative yields of short-lived ruthenium isotopes in the thermal neutron induced fission of235U,235U and239Pu have been determined using a fast radiochemical separation technique followed by gamma spectrometry. The cumulative yields of107Ru and103Ru in233U (nth, f) and107Ru and109Ru in239Pu (nth, f) are determined for the first time. The measured cumulative yields are converted to chain yields assuming normal charge distribution systematics for comparison with the literature data on chain yields.  相似文献   

13.
《中国化学快报》2023,34(11):108440
Uranium and molybdenum are important strategic elements. The production of 99Mo and the hydrometallurgical process of uranium ore face difficult problems of separation of uranium and molybdenum. In this study, the four phenanthroline diamide ligands were synthesized, and extraction and stripping experiments were performed under different conditions to evaluate the potential application of these ligands for separation of U(VI) over Mo(VI). With the growth of alkyl chain, the solubility of ligands could be greatly improved, and the separation effect of U(VI) over Mo(VI) gradually increased. The SFU/Mo were around 10,000 at 4 mol/L HNO3. Three stripping agents were tested with the stripping efficiency of Na2CO3 (5%) > H2O > HNO3 (0.01 mol/L). The stripping percentages of the three stripping agents were all close to unity, indicating that the ligands had the potential to be recycled. The chemical stoichiometry of U(VI) complexes with ligands was evaluated as 1:1 using electrospray ionization mass spectrometry, ultraviolet visible spectroscopy and single-crystal X-ray diffraction. The consistency between theoretical calculation and experimental results further explains the coordination mechanism.  相似文献   

14.
A radiochemical neutron activation technique for Mo determination in high purity tungsten, based on some specific properties of Mo and W radionuclides has been developed. Al2O3 powder has been used as a sorbent. An estimation of the Mo content was carried out via the selectively separated99mTc daughter radionuclide. Limit of detection was 10 ng g–1.  相似文献   

15.
The sorption behavior of 235U fission fission products 99Mo and 132Te was studied through batch and dynamic experiments when they were dissolved in 1 to 7M HNO3 solutions. It was found that 99Mo is always totally adsorbed on hydrated SnO2, while 132Te is rather weakly adsorbed, therefore they can be separated from each other although 132Te in the solution still remains contaminated with other radionuclides as well as 99Mo does in the solid.  相似文献   

16.
Summary A method of iodine separation from other radionuclides generated by 235U fission has been developed in order to explore the possibilities to obtain 131I as by-product of the 99Mo routine production in the Ezeiza Atomic Centre. The experiments were designed to remove this element to gas phase, and the recoveries were investigated both with and without carrier addition. High volatilization percentages were achieved in the presence of iodine carrier. Some other alternatives to increase the iodine displacement to the gaseous phase, namely vacuum distillation, addition of hydrogen peroxide and use of a carrier gas, were also studied. The method developed, which employs a carrier gas stream, without carrier addition, allows the recovery of about 97% of the 131I, with high specific activity, in a simple and clean way.  相似文献   

17.
The isotopic compositions of molybdenum in six uranium-rich samples from the Oklo Zone 9 natural reactor were accurately measured by thermal ionization mass spectrometry. The samples were subjected to an ion exchange separation process that removed the isobaric elements zirconium and ruthenium, with high efficiency and a low blank. Molybdenum possesses seven isotopes of which 92,94,96Mo are unaffected by the fission process, enabling the raw data to be corrected for isotope fractionation by normalising to 92Mo/96Mo, and to use 94Mo to correct for the primordial component in each of the fission-produced isotopes. This enables the relative fission yields of Mo to be calculated from the isotopic composition measurements, to give cumulative fission yields of 1:0.941:0.936:1.025 for 95,97,98,100Mo, respectively. These data demonstrate that the most important nuclear process involved in reactor Zone 9 was the thermal neutron fission of 235U. The consistency of the relative cumulative fission yields of all six samples from different locations in the reactor, implies that Mo is a mobile element in the uraninite comprising Zone 9, and that a significant fraction of molybdenum was mobilized within the reactor zone and probably escaped from Zone 9, a conclusion in agreement with earlier published work.  相似文献   

18.
A simple method for the determination of molybdenum and tungsten in sea and surface water is presented. Molybdenum and tungsten are concentrated on activated charcoal by adsorption as the ammonium pyrrolidine dithiocarbamate complex; the optimal pH for adsorption is 1.3. Mo and W are then determined by thermal neutron activation, forming 99Mo (T12 = 66.7 h) and 137W (T12 = 23.8 h), respectively. The 99mTc daughter of 99Mo is measured as soon as the equilibrium between 99mTc(T12= 6 h) and 99Mo is established. The detection limits are 0.05 μg Mo l-1 and 0.05 μg W l-1 (or 0.001 μg W l-1 after a simple chemical separation).  相似文献   

19.
A systematic study on the extraction of99Mo and its daughter99mTc by pure organic diluents and dinonylnaphthalinesulfonic acid (DNNS) is described. The aqueous phases used are H2SO4, HCl, KI and their binary mixture solutions. The effect of alcohols on the distribution coefficient has been investigated. As a result of the study, a simple and rapid generator is built for the production of pure99mTc from99Mo.  相似文献   

20.
The radionuclide 99Mo, which has a half-life of 65.94 h was produced from 238U(γ, f) and 100Mo(γ, n) reactions using a 10 MeV electron linac at EBC, Kharghar Navi-Mumbai, India. This has been investigated since the daughter product 99mTc is very important from a medical point of view and can be produced in a generator from the parent 99Mo. The activity of 99Mo was analyzed by a γ-ray spectrometric technique using a HPGe detector. From the detected γ-rays activity of 140.5 and 739.8 keV, the amount of 99Mo produced was determined. For comparison, the amount of 99Mo from 238U(γ, f) and 100Mo(γ, n) reactions was also estimated using the experimental photon flux from 197Au(γ, n)196Au reaction. The amount of 99Mo from the detected γ-lines is in agreement with the estimated value for 238U(γ, f) and 100Mo(γ, n) reactions. The production of 99Mo activity from 238U(γ, f) and 100Mo(γ, n) reactions is a relevant and novel approach, which provides alternative routes to 235,238U(n, f) and 98Mo(n, γ) reactions, circumventing the need for a reactor. The viability and practicality of the 99Mo production from the 238U(γ, f) and 100Mo(γ, n) reactions alternative to 235,238U(n, f) and 98Mo(n, γ) reactions has been emphasize. An estimate has been also arrived based on the experimental data of present work to fulfill the requirement of DOE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号