首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
It is generally admitted that the gas holdup is independent of the column dimensions and gas sparger design if three criteria are satisfied: the diameter of the bubble column is larger than 0.15 m, gas sparger openings are larger than 1–2 mm and the aspect ratio is larger than 5. This paper contributes to the existing discussion; in particular, the effect of the aspect ratio (within the range 1–15) in a counter-current gas-liquid bubble column has been experimentally studied and a new gas holdup correlation to estimate the influence of aspect ratio, operation mode and working fluid on the gas holdup has been proposed. The bubble column, equipped with a spider gas sparger, is 5.3 m in height, has an inner diameter of 0.24 m; gas superficial velocities in the range of 0.004–0.23 m/s have been considered, and, for the runs with water moving counter-currently to the gas phase, the liquid has been recirculated at a superficial velocity of −0.0846 m/s. Filtered air has been used as the gaseous phase in all the experiments, while the liquid phase has included tap water and different aqueous solutions of sodium chloride as electrolyte. Gas holdup measurements have been used to investigate the flow regime transitions and the global bubble column hydrodynamics. The counter-current mode has turned out to increase the gas holdup and destabilize the homogeneous flow regime; the presence of electrolytes has resulted in increasing the gas holdup and stabilizing the homogeneous flow regime; the aspect ratio, up to a critical value, has turned out to decrease the gas holdup and destabilize the homogeneous flow regime. The critical value of the aspect ratio ranged between 5 and 10, depending on the bubble column operation (i.e., batch or counter-current modes) and liquid phase properties. Since no correlation has been found in the literature that can correctly predict the gas holdup under the investigated conditions, a new scheme of gas holdup correlation has been proposed. Starting from considerations concerning the flow regime transition, corrective parameters are included in the gas holdup correlation to account for the effect of the changes introduced by the aspect ratio, operation mode and working fluid. The proposed correlation has been found to predict fairly well the present experimental data as well as previously published gas holdup data.  相似文献   

2.
A new approach for simulating the formation of a froth layer in a slurry bubble column is proposed. Froth is considered a separate phase, comprised of a mixture of gas, liquid, and solid. The simulation was carried out using commercial flow simulation software (FIRE v2014) for particle sizes of 60–150 μm at solid concentrations of 0–40 vol%, and superficial gas velocities of 0.02–0.034 m/s in a slurry bubble column with a hydraulic diameter of 0.2 m and height of 1.2 m. Modelling calculations were conducted using a Eulerian–Eulerian multiphase approach with k–ε turbulence. The population balance equations for bubble breakup, bubble coalescence rate, and the interfacial exchange of mass and momentum were included in the computational fluid dynamics code by writing subroutines in Fortran to track the number density of different bubble sizes. Flow structure, radial gas holdup, and Sauter mean bubble diameter distributions at different column heights were predicted in the pulp zone, while froth volume fraction and density were predicted in the froth zone. The model was validated using available experimental data, and the predicted and experimental results showed reasonable agreement. To demonstrate the effect of increasing solid concentration on the coalescence rate, a solid-effect multiplier in the coalescence efficiency equation was used. The solid-effect multiplier decreased with increasing slurry concentration, causing an increase in bubble coalescence efficiency. A slight decrease in the coalescence efficiency was also observed owing to increasing particle size, which led to a decrease in Sauter mean bubble diameter. The froth volume fraction increased with solid concentration. These results provide an improved understanding of the dynamics of slurry bubble reactors in the presence of hydrophilic particles.  相似文献   

3.
To investigate the effects of hydrophilic particles on slurry bubble flows in a bubble column, distributions of the local gas holdup and the bubble frequency are measured using an electric conductivity probe. Particles are made of silica and their diameter is 100 μm. The particle volumetric concentration CS is varied from 0 to 0.40. The measured data imply that the presence of particles promotes bubble coalescence. The film drainage time for two coalescing bubbles in a quasi two-dimensional bubble flow in a small vessel is also measured to quantitatively evaluate the particle effect on coalescence. A particle-effect multiplier is introduced into a coalescence efficiency model by taking into account the data of film drainage time and is implemented into a multi-fluid model. The main conclusions obtained are as follows: (1) the local gas holdup and bubble frequency in slurry bubble flows decrease with increasing the particle concentration, (2) the hydrophilic particles enhance bubble coalescence and the enhancement saturates at CS  0.45, (3) the particle effect on coalescence is well accounted for by introducing the particle-effect multiplier to the film drainage time, and (4) the multi-fluid model can give good predictions for the distribution of the local gas holdup in the slurry bubble column.  相似文献   

4.
A method which combines standard two-dimensional particle image velocimetry (PIV) with a new image processing algorithm has been developed to measure the average local gas bubble velocities, as well as the local velocities of the liquid phase, within small stirred vessel reactors. The technique was applied to measurements in a gas–liquid high throughput experimentation (HTE) vessel of 45 mm diameter, but it is equally suited to measurements in larger scale reactors. For the measurement of liquid velocities, 3 μm latex seeding particles were used. For gas velocity measurements, a separate experiment was conducted which involved doping the liquid phase with fluorescent Rhodamine dye to allow the gas–liquid interfaces to be identified. The analysis of raw PIV images enabled the detection of bubbles within the laser plane, their differentiation from obscuring bubbles in front of the laser plane, and their use in lieu of tracer particles for gas velocity analysis using cross-correlation methods. The accuracy of the technique was verified by measuring the velocity of a bubble rising in a vertical glass column. The new method enabled detailed velocity fields of both phases to be obtained in an air–water system. The overall flow patterns obtained showed a good qualitative agreement with previous work in large scale vessels. The downward liquid velocities above the impeller were greatly reduced by the addition of the gas, and significant differences between the flow patterns of the two-phases were observed.  相似文献   

5.
Current research proofs the potential of apparatuses containing minichannel flow structures to intensify gas-liquid-solid contacting processes. The excellent heat and mass transfer in these devices as well as a sharp RTD mainly result from the Taylor flow regime. A proper design of corresponding contactors requires precise information on the provided interfacial areas. However, the characterisation of gas-liquid Taylor flow with industrially relevant fluids at elevated pressure and created by capillary injection devices gained little attention so far.This work analyses adiabatic gas-liquid Taylor flow in a square minichannel of 1.0 mm hydraulic diameter using water, water-glycerol, or water-ethanol mixtures as liquid phase and hydrogen or nitrogen as gas phase to cover a broad range of material parameters. In the mixing zone located within the flow channel, gas was injected into the co-flowing liquid by so-called capillary injectors with variable inner diameter (0.184, 0.317, 0.490 mm).Two different bubble forming mechanisms were identified leading to a complex interaction between physical properties of the fluids, geometrical parameters and the observed gas bubble and liquid slug lengths. According to the Pi-theorem, these lengths were affected by 6 dimensionless groups, namely (uG,s/ uL,s), ReL, WeL, (dIn,CI/ dh), (dOu,CI / dh), and Θ*. Based on more than 370 experimental data, novel correlations to predict gas bubble and liquid slug lengths were developed.  相似文献   

6.
The possible events during bubble formation on an orifice were investigated using a rectangular bubble column (30 cm × 30 cm × 100 cm). The gas flow rate through a single orifice was adjusted from 0.1 dm3/min to 5.0 dm3/min covering a high flow rate regime. At the high gas flow rate, the bubble formation process was complicated by diverse events, such as wake effect, channeling, and orifice-induced turbulent flow. The detachment period could be used to discern the bubble formation steps because it was strongly affected by the above events. The bubble size distribution around the orifice was also analyzed to gain a clearer understanding of the bubble formation process. Above the rate of 3.0 dm3/min through a single orifice, the detachment period converged to a value of 25 ms irrespective of the orifice diameter. The bubble size distribution also showed little difference in this range of gas flow rate. This could be explained by the development of turbulent flow around the orifice. A 0.15 m in-diameter bubble column was tested to investigate the effect of orifice-induced turbulent flow on the regime transition in which the homogeneous flow regime is converted into the heterogeneous flow regime in the column. Obvious distinction between the orifice- and column-induced transitions was observed.  相似文献   

7.
Dispersion of gas into pulp-suspension horizontal flow was investigated downstream of 90° tees for ranges of fibre mass concentrations (0–3.0%), superficial liquid/pulp velocities (0.5–5.0 m/s) and superficial gas velocities (0.11–0.44 m/s) based on a gas mixing index, derived from the standard deviation of cross-sectional local gas holdup obtained from electrical resistance tomography. Mixing for dilute suspensions was similar to that for water, but differed significantly for higher suspension concentrations. Mixing worsened with increasing fibre mass concentration for the bubble flow regime, likely due to dense fibre networks in the core of the pipe causing bubbles to congregate near the wall. When buoyancy was significant, gas uniformity improved with increasing pulp concentration, since robust fibre networks caused liquid/pulp slugs to flow at the top of the pipe, whereas stratified flow was approached at lower concentrations. Mixing was less dependent on superficial liquid/pulp velocity at higher pulp concentrations, due to less variation in flow regimes.  相似文献   

8.
The effect of gas expansion on the velocity of a Taylor bubble was studied experimentally. The velocity field in the liquid ahead of a Taylor bubble was measured by particle image velocimetry (PIV), and the bubble velocity was measured with two pairs of laser diodes and photocells. The experiments were done in a 7.0 m long vertical tube with a 32 mm internal diameter. Solutions of carboxymethylcellulose (CMC) polymer with weight percentages between 0.01% and 0.1% were used. The expansion of slug gas induces an increase in the bubble velocity and a corresponding displacement of the liquid ahead of the bubble. The velocity of the bubble increases by an amount equal to the maximum velocity in the liquid displaced. For the solutions studied, the induced velocity profile was parabolic and the bubble velocity increase was equal to the liquid velocity at the tube axis, i.e., twice the mean velocity in the liquid displaced. The corrected velocity obtained by subtracting the velocity increase from the value of the bubble velocity is independent of the bubble length.  相似文献   

9.
Estimating gas holdup via pressure difference measurements is a simple and low-cost non-invasive technique to study gas holdup in bubble columns. It is usually used in a manner where the wall shear stress effect is neglected, termed Method II in this paper. In cocurrent bubble columns, when the liquid velocity is high or the fluid is highly viscous, wall shear stress may be significant and Method II may result in substantial error. Directly including the wall shear stress term in the determination of gas holdup (Method I) requires knowledge of two-phase wall shear stress models and usually requires the solution of non-linear equations. A new gas holdup estimation method (Method III) via differential pressure measurements for cocurrent bubble columns is proposed in this paper. This method considers the wall shear stress influences on gas holdup values without calculating the wall shear stress. A detailed analysis shows that Method III always results in a smaller gas holdup error than Method II, and in many cases, the error is significantly smaller than that of Method II. The applicability of Method III in measuring gas holdup in a cocurrent air–water–fiber bubble column is examined. Analysis based on experimental data shows that with Method III, accurate gas holdup measurements can be obtained, while measurement error is significant when Method II is used for some operational conditions.  相似文献   

10.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

11.
Experimental data from horizontal air–water slug flows were obtained in a test facility which was a 34 mm internal diameter, 10 m long Plexiglas pipe connected to the 90° branch arms from a T-junction. The test points were located on the flow pattern map in the proximity of the transition lines which separates different flow patterns. Capacitive probes with helical and concave plate sensors were used to quantify the dynamic liquid holdup in each branch. They were combined with Venturi nozzles + differential pressure transmitters in each outlet branch for measuring the two-phase mass flow rates. The dynamic characteristics of the slug flow splitting in a T-junction were studied from the acquired signals. Diaphragm straight-through type valves were used in the run and in the lateral branch arms to imitate equipments consuming the two-phase flow after the T-junction. This assembly can also be used as a gas–liquid separation system. The results showed different mechanisms acting on the slug flow division phenomenon. Liquid accumulation into the run branch, between the TJ and the control valve, caused more gas to come to the lateral branch.  相似文献   

12.
The effect of an internal turbulent bubbly flow on vibrations of a channel wall is investigated experimentally and theoretically. Our objective is to determine the spectrum and attenuation rate of sound propagating through a bubbly liquid flow in a channel, and connect these features with the vibrations of the channel wall and associated pressure fluctuations. Vibrations of an isolated channel wall and associated wall pressure fluctuations are measured using several accelerometers and pressure transducers at various gas void fractions and characteristic bubble diameters. A waveguide-theory-based model, consisting of a solution to the three-dimensional Helmholtz equation in an infinitely long channel with the effective physical properties of a bubbly liquid is developed to predict the spectral frequencies of the wall vibrations and pressure fluctuations, the corresponding attenuation coefficients and propagation phase speeds. Results show that the presence of bubbles substantially enhances the power spectral density of the channel wall vibrations and wall pressure fluctuations in the 250–1200 Hz range by up to 27 and 26 dB, respectively, and increases their overall rms values by up to 14.1 and 12.7 times, respectively. In the same frequency range, both vibrations and spectral frequencies increase substantially with increasing void fraction and slightly with increasing bubble diameter. Several weaker spectral peaks above that range are also observed. Trends of the frequency and attenuation coefficients of spectral peaks, as well as the phase velocities are well predicted by the model. This agreement confirms that the origin of enhanced vibrations and pressure fluctuations is the excitation of streamwise propagating pressure waves, which are created by the initial acoustic energy generated during bubble formation.  相似文献   

13.
An experimental investigation was carried out on viscous oil–gas flow characteristics in a 69 mm internal diameter pipe. Two-phase flow patterns were determined from holdup time-traces and videos of the flow field in a transparent section of the pipe, in which synthetic commercial oils (32 and 100 cP) and sulfur hexafluoride gas (SF6) were fed at oil superficial velocities from 0.04 to 3 m/s and gas superficial velocities from 0.0075 to 3 m/s.  相似文献   

14.
An extensive study of the most important hydrodynamic characteristics of fairly large-scale bubble plumes was conducted using several measurement techniques and a variety of tools to analyze the data. Particle image velocimetry (PIV), double-tip optical probes (OP) and photographic techniques were extensively applied to measure bubble and liquid velocities, void-fraction and bubble sizes. PIV measurements in a vertical plane crossing the centre of the injector provided the instantaneous velocity fields for both phases, as well as hydrodynamic parameters, such as the movement of the axis of the plume and its instantaneous shape. Statistical studies were performed using image processing to determine the distribution of the apparent instantaneous plume diameter and centreline position. An important finding was that there is little instantaneous spreading of the bubble plume core; the spreading of the time-averaged plume width (as measured from the time-averaged void-fraction and time-averaged liquid velocity fields) is largely due to plume meandering and oscillations. The liquid-phase stress tensor distributions obtained from the instantaneous velocity data indicate that, for the continuous phase, these stresses scale linearly with the local void-fraction in the range of 0.5% < α < 2.5%. The bubbles were found to be ellipsoidal, with shape factor e  0.5.  相似文献   

15.
Fluidization experiments were performed using several particle size distributions of spherical glass particles, ranging from Geldart B to D. An Electrical Capacitance Tomography (ECT) tomograph was utilized in the present study and its usefulness as a diagnostic tool is illustrated. During the experiments a 10.4 cm diameter column was utilized and the column was operated at atmospheric pressure and room temperature (cold fluidized bed). Statistical analyses were performed on the average solid fraction data obtained using the ECT tomograph. Using the time domain skewness and kurtosis the time series could be characterised and the quality of fluidization is determined at different superficial gas velocities (Azizpour, H., Sotudeh-Gharebagh, R., Zarghami, R., Abbasi, M., Mostoufi, N., Mahjoob, M., 2011. Characterization of gas–solid fluidized bed hydrodynamics by vibration signal analysis. International Journal of Multiphase Flow, 37, 788–793). Statistical analysis is also used to characterise the influence of small particles on the bed hydrodynamics.  相似文献   

16.
This work is devoted to study of the slip phenomenon between phases in water–oil two-phase flow in horizontal pipes. The emphasis is placed on the effects of input fluids flow rates, pipe diameter and viscosities of oil phase on the slip. Experiments were conducted to measure the holdup in two horizontal pipes with 0.05 m diameter and 0.025 m diameter, respectively, using two different viscosities of white oil and tap water as liquid phases. Results showed that the ratios of in situ oil to water velocity at the pipe of small diameter are higher than those at the pipe of big diameter when having same input flow rates. At low input water flow rate, there is a large deviation on the holdup between two flow systems with different oil viscosities and the deviation becomes gradually smaller with further increased input water flow rate.  相似文献   

17.
Liquid atomization is useful in many applications, such as engineering, science, pharmaceutics, medicine, forensics and others. In the present research, an innovative methodology and a new device for atomization of liquids into mists of micron and submicron droplets have been developed. The new liquid-atomization method exploits the physical phenomenon of fragmentation of thin liquid films into fine micron and submicron droplets by gas jets. For several tested prototypes, the direct observations using a high-speed visualization technique have demonstrated that bubbles were generated within a liquid and their shells have been subsequently destroyed by applying a mechanical impulse (pressure of a compressed air) once the bubbles came over the liquid surface. The main characteristics of the generated tap water mists have been experimentally measured by means of the laser diffraction technique under various conditions for each prototype. One of the prototype devices allowed obtaining mists containing 90–99% of droplets smaller than 1 µm, with the minimum arithmetic and Sauter mean droplet diameters of 1.48 µm and 2.66 µm, and the 2.64 ml/min of droplet flow rate for 3.5 bar manometer pressure of atomizing air. The gas to liquid mass ratios (GLR) in the new device are depending on the atomizing tube length and the number of perforated orifices in the tube: more the tube length, hence more the number of perforated orifices, and therefore more liquid droplets will form for the same gas flow rate. The measured GLR values related to 1 m length of the utilized atomizing tube were in the range of 0.65–1.06, and for the specifically utilized atomizing tube of 72 mm length were among 9.07–14.67. The results of this study demonstrate that the developed method of generation of very fine droplet mists has many advantages over the existing techniques and can be perspective for many practical applications.  相似文献   

18.
The motion of single Argon bubbles rising in the eutectic alloy GaInSn under the influence of a DC longitudinal magnetic field (parallel to the direction of bubble motion) was examined. The magnetic field strength was varied up to 0.3 T corresponding to a magnetic interaction parameter N (which measures the ratio of electromagnetic forces to inertial forces) slightly greater than 1. The liquid metal was at rest in a cylindrical container. Bubble and liquid velocities were measured using ultrasound Doppler velocimetry (UDV). The measured bubble terminal velocity showed oscillations indicating a zigzag movement of ellipsoidal bubbles. For small bubbles (de  4.6 mm) an increase of the drag coefficient with increasing magnetic interaction parameter N was observed, whereas for larger bubbles (de  5.4 mm) the application of the magnetic field reduces the drag coefficient. The measurements revealed a distinct electromagnetic damping of the bubble induced liquid velocity leading to more rectilinear bubble trajectories when the magnetic field is applied. Moreover, significant modifications of the bubble wake structure were observed. Raising of the magnetic field strength caused an enlargement of the eddies in the wake. The Strouhal number decreases with increasing magnetic interaction parameter N.  相似文献   

19.
Gas entrainment by a liquid film falling around a stationary Taylor bubble in a 0.1 m diameter vertical tube is studied experimentally with the purpose of validating a model formulated in an earlier phase of our research. According to this model for a fixed liquid velocity the gas entrainment should be proportional to the waviness of the film (its intermittency) and the wave height and inversely proportional to the film thickness. For Taylor bubble lengths ranging from 1D to 15D these film parameters have been measured with a Laser Induced Fluorescence technique. The gas entrainment has been determined from the net gas flux into the liquid column underneath the Taylor bubble by using data on gas re-coalescence into the rear of the Taylor bubble. These data are available for lengths ranging from 4.5D to 9D. The model results with the measured film characteristics compare well with the observed gas entrainment. The fact that the net gas flux becomes constant for long Taylor bubbles, whereas the wave height still increases, warrants further study.  相似文献   

20.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号