首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria frequently attach to medical devices such as intravascular catheters by forming sessile multicellular communities known as biofilms, which can be the source of persistent infections that are recalcitrant to systemic antibiotic therapy. As a result of this persistence, a number of technologies have been developed to prevent catheter-associated biofilm formation. Whereas the most straightforward approaches focus on impregnating catheter material with classical antimicrobial agents, these approaches are not universally effective, thereby underscoring the need for more potent and more sophisticated approaches to the prevention of catheter-related biofilm infections.  相似文献   

2.
Standard laboratory methods are needed to assess the efficacy of antimicrobial agents that are applied to biofilm bacteria. Existing standard suspension tests and dried surface tests show much greater efficacy than antimicrobial agents applied to biofilms. The greater resistance of biofilm bacteria to antimicrobial agents can be attributed to a number of interacting factors, including reaction and diffusion processes that limit an agent's accessibility to bacteria, phenotypic changes in biofilm bacteria caused by stress, and adaptation of the bacteria. Because biofilm systems are so diverse, a variety of new biofilm tests with features that differ in important ways from existing tests will ultimately be required. For example, the biofilm test apparatus may include a pump and a continuous-flow stirred tank reactor. This report provides an overview of biofilm testing and suggests a strategy for creating standard test methods.  相似文献   

3.
Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.  相似文献   

4.
Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis patients, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: (1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, (2) chemical library screening for compounds with anti-biofilm activity, and (3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity.  相似文献   

5.
Cationic end-only-functionalized oligo(arylene-ethynylene)s (EO-OPEs) have recently been found to be broad-spectrum and effective antimicrobial agents because of their unique structure and optical properties. In this study, we investigated their potential use for preventing and reducing Escherichia coli (E. coli) biofilms. The Calgary biofilm device (CBD) was used to form bacterial biofilms of E. coli; in these studies, the minimum inhibitory concentration (MIC) and the minimum biofilm eradication concentration (MBEC) were determined. E. coli biofilms uniformly grow on pegs of the CBD device lid. The MIC values determined for EO-OPEs are comparable to those found for standard antibiotics such as kanamycin (MIC = 11.2 μg/mL). About 10-30 times the concentration of EO-OPEs was required to eradicate E. coli biofilms and prevent regrowth in the dark. Near-UV irradiation of EO-OPEs enhanced their efficacy in killing biofilms.  相似文献   

6.
Microbial biofilm architecture contains numerous protective features, including extracellular polymeric material that render biofilms impermeable to conventional antimicrobial agents. This study evaluated the efficacy of antimicrobial photodynamic inactivation (aPDI) of Enterococcus faecalis biofilms. The ability of a cationic, phenothiazinium photosensitizer, methylene blue (MB) and an anionic, xanthene photosensitizer, rose bengal (RB) to inactivate biofilms of E. faecalis (OG1RF and FA 2-2) and disrupt the biofilm structure was evaluated. Bacterial cells were tested as planktonic suspensions, intact biofilms and biofilm-derived suspensions obtained by the mechanical disruption of biofilms. The role of a specific microbial efflux pump inhibitor (EPI), verapamil hydrochloride in the MB-mediated aPDI of E. faecalis biofilms was also investigated. The results showed that E. faecalis biofilms exhibited significantly higher resistance to aPDI when compared with E. faecalis in suspension (P < 0.001). aPDI with cationic MB produced superior inactivation of E. faecalis strains in a biofilm along with significant destruction of biofilm structure when compared with anionic RB (P < 0.05). The ability to inactivate biofilm bacteria was further enhanced when the EPI was used with MB (P < 0.001). These experiments demonstrated the advantage of a cationic phenothiazinium photosensitizer combined with an EPI to inactivate biofilm bacteria and disrupt biofilm structure.  相似文献   

7.
Bacterial biofilms are difficult to eradicate because they are less susceptible to antibiotics and more easily develop resistance. Therefore, there is an urgent need for new materials that can combat planktonic bacteria and disrupt established biofilms. To tackle this challenge, we design a multifunctional zwitterionic pillar[5]arene, which can self‐assemble into weakly positively charged nanoaggregates that exhibit antibacterial activity against Gram‐negative Escherichia coli (DH5α) and Gram‐positive Staphylococcus aureus (SH1000) bacterial strains in solution. In addition, the zwitterionic pillar[5]arene can efficiently disrupt pre‐existing Escherichia coli (DH5α) biofilms and kill the biofilm‐enclosed bacteria without rapid generation of resistance.  相似文献   

8.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

9.
Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness.  相似文献   

10.
Emerging antibiotic resistance in bacterial pathogens has necessitated the development of alternative ‘outside of the box’ antimicrobial therapeutics. Polypept(o)ide-based bactericides with chemical structures mimicking antimicrobial host defense peptides have emerged as promising candidates for treating antibiotic-resistant and recurring infections. This review summarizes the recent advances in membrane-active polypept(o)ide-based bactericides in the treatment of antibiotic-resistant bacterial infections associated with the physical disruption of bacterial cell walls/cell membranes. Among these polypept(o)ide-based bactericides, nonantibiotic treatment strategies are employed to combat lethal bacterial strains resulting from acquired antibiotic resistance and biofilm formation, featuring the capacity to evade acquired antibiotic resistance-related mechanisms and to alleviate the emergence of drug resistance. Emphasis will focus on the typical polypept(o)ides with diverse molecular conformations (e.g., linear, brush-like, and star-shaped) and various chemical structures of monomers (e.g., α-amino acid, β-amino acid, and N-substituted glycine) that are central to the performance of antimicrobial polypept(o)ides. Finally, a brief discussion of the key challenges and prospects of polypept(o)ide-based bactericides is presented.  相似文献   

11.
Implantable medical devices (IMDs) are susceptible to microbial adhesion and biofilm formation, which lead to several clinical complications, including the occurrence of implant-associated infections. Polylactic acid (PLA) and its composites are currently used for the construction of IMDs. In addition, chitosan (CS) is a natural polymer that has been widely used in the medical field due to its antimicrobial and antibiofilm properties, which can be dependent on molecular weight (Mw). The present study aims to evaluate the performance of CS-based surfaces of different Mw to inhibit bacterial biofilm formation. For this purpose, CS-based surfaces were produced by dip-coating and the presence of CS and its derivatives onto PLA films, as well surface homogeneity were confirmed by contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antimicrobial activity of the functionalized surfaces was evaluated against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan-based surfaces were able to inhibit the development of single- and dual-species biofilms by reducing the number of total, viable, culturable, and viable but nonculturable cells up to 79%, 90%, 81%, and 96%, respectively, being their activity dependent on chitosan Mw. The effect of CS-based surfaces on the inhibition of biofilm formation was corroborated by biofilm structure analysis using confocal laser scanning microscopy (CLSM), which revealed a decrease in the biovolume and thickness of the biofilm formed on CS-based surfaces compared to PLA. Overall, these results support the potential of low Mw CS for coating polymeric devices such as IMDs where the two bacteria tested are common colonizers and reduce their biofilm formation.  相似文献   

12.
Understanding the chemical composition of biofilm matrices is vital in different fields of biology such as surgery, dental medicine, synthetic grafts and bioremediation. The knowledge of biofilm development, composition, active reduction sites and remediation efficacy will help in the development of effective solutions and evaluation of remediating approaches prior to implementation. Surface-enhanced Raman spectroscopy (SERS) based imaging is an invaluable tool to obtain an understanding of the remediating efficacy of microorganisms and its role in the formation of organic and inorganic compounds in biofilms. We demonstrate for the first time, the presence of chromate, sulfate, nitrate and reduced trivalent chromium in soil biofilms. In addition, we demonstrate that SERS imaging was able to validate two observations made by previous studies on chromate/sulfate and chromate/nitrate interactions in Shewanella oneidensis MR-1 biofilms. Additionally, we show a detailed Raman mapping based evidence of the existence of chromate–sulfate competition for cellular entry. Subsequently, we use Raman mapping to study the effect of nitrate on chromate reduction. The findings presented in this paper are among the first to report – detection of multiple metallic ions in bacterial biofilms using intracellular SERS substrates. Such a detailed characterization of biofilms using gold nanoislands based SERS mapping substrate can be extended to study cellular localization of other metallic ions and chemical species of biological and toxicological significance and their effect on reduction reactions in bacterial biofilms.  相似文献   

13.
Biofilms are ensued due to bacteria that attach to surfaces and aggregate in a hydrated polymeric matrix. Formation of these sessile communities and their inherent resistance to anti-microbial agents are the source of many relentless and chronic bacterial infections. Such biofilms are responsible play a major role in development of ocular related infectious diseases in human namely microbial keratitis. Different approaches have been used for preventing biofilm related infections in health care settings. Many of these methods have their own demerits that include chemical based complications; emergent antibiotic resistant strains, etc. silver nanoparticles are renowned for their influential anti-microbial activity. Hence the present study over the biologically synthesized silver nanoparticles, exhibited a potential anti-biofilm activity that was tested in vitro on biofilms formed by Pseudomonas aeruginosa and Staphylococcus epidermidis during 24-h treatment. Treating these organisms with silver nanoparticles resulted in more than 95% inhibition in biofilm formation. The inhibition was known to be invariable of the species tested. As a result this study demonstrates the futuristic application of silver nanoparticles in treating microbial keratitis based on its potential anti-biofilm activity.  相似文献   

14.
Antibiotic abuse causes the emergence of bacterial resistance. Photodynamic antibacterial chemotherapy (PACT) has great potential to solve serious bacterial resistance, but it suffers from the inefficient generation of ROS and the lack of bacterial targeting ability. Herein, a unique cationic photosensitizer (NB) and bacteriophage (ABP)-based photodynamic antimicrobial agent (APNB) is developed for precise bacterial eradication and efficient biofilm ablation. Thanks to the structural modification of the NB photosensitizer with a sulfur atom, it displays excellent reactive oxygen species (ROS)-production ability. Moreover, specific binding to pathogenic microorganisms can be provided by bacteriophages. The developed APNB has multiple functions, including bacteria targeting, near-infrared fluorescence imaging and combination therapy (PACT and phage therapy). Both in vitro and in vivo experiments prove that APNB can efficiently treat A. baumannii infection. Particularly, the recovery from A. baumannii infection after APNB treatment is faster than that with ampicillin and polymyxin B in vivo. Furthermore, the strategy of combining bacteriophages and photosensitizers is employed to eradicate bacterial biofilms for the first time, and it shows the excellent biofilm ablation effect as expected. Thus, APNB has huge potential in fighting against multidrug-resistant bacteria and biofilm ablation in practice.

APNB for multidrug-resistant A. Baumannii therapy and biofilms ablation.  相似文献   

15.
Bacterial biofilms-aggregations of bacterial cells and extracellular polymeric substrates (EPS)-are an important subject of research in the fields of biology and medical science. Under aquatic conditions, bacterial cells form biofilms as a mechanism for improving survival and dispersion. In this review, we discuss bacterial biofilm development as a structurally and dynamically complex biological system and propose microfluidic approaches for the study of bacterial biofilms. Biofilms develop through a series of steps as bacteria interact with their environment. Gene expression and environmental conditions, including surface properties, hydrodynamic conditions, quorum sensing signals, and the characteristics of the medium, can have positive or negative influences on bacterial biofilm formation. The influences of each factor and the combined effects of multiple factors may be addressed using microfluidic approaches, which provide a promising means for controlling the hydrodynamic conditions, establishing stable chemical gradients, performing measurement in a high-throughput manner, providing real-time monitoring, and providing in vivo-like in vitro culture devices. An increased understanding of biofilms derived from microfluidic approaches may be relevant to improving our understanding of the contributions of determinants to bacterial biofilm development.  相似文献   

16.
Advanced methods for preventing and controlling hospital‐acquired infections via eradication of free‐floating bacteria and bacterial biofilms are of great interest. In this regard, the attractiveness of unconventional treatment modalities such as antimicrobial photodynamic therapy (aPDT) continues to grow. This study investigated a new and innovative strategy for targeting polysaccharides found on the bacterial cell envelope and the biofilm matrix using the boronic acid functionalized and highly effective photosensitizer (PS) silicon(IV) phthalocyanine. This strategy has been found to be successful in treating planktonic cultures and biofilms of Gram‐negative E. coli. An additional advantage of boronic acid functionality is a possibility to anchor the tailor made PS to poly(vinyl alcohol) and to fabricate a self‐disinfecting coating.  相似文献   

17.
Seven-day oral plaque biofilms have been formed on natural enamel surfaces in vivo using a previously reported in situ device. The devices are then incubated with a cationic Zn(II) phthalocyanine photosensitizer and irradiated with white light. Confocal scanning laser microscopy (CSLM) of the biofilms shows that the photosensitizer is taken up into the biomass of the biofilm and that significant cell death is caused by photodynamic therapy (PDT). In addition, the treated biofilms are much thinner than the control samples and demonstrate a different structure from the control samples, with little evidence of channels and a less dense biomass. Transmission electron microscopy (TEM) of the in vivo-formed plaque biofilms reveals considerable damage to bacteria in the biofilm, vacuolation of the cytoplasm and membrane damage being clearly visible after PDT. These results clearly demonstrate the potential value of PDT in the management of oral biofilms.  相似文献   

18.
Biofilm formation is a major threat to industry, the environment and human health. While killing of embedded microbes in biofilms may inevitably lead to the evolution of antimicrobial resistance (AMR), catalytic quenching of bacterial communications by lactonase is a promising antifouling approach. Given the shortcomings of protein enzymes, it is attractive to engineer synthetic materials to mimic the activity of lactonase. Herein, an efficient lactonase-like Zn−Nx−C nanomaterial was synthesized by tuning the coordination environment around zinc atoms to mimic the active domain of lactonase for catalytical interception of bacterial communications in biofilm formation. The Zn−Nx−C material could selectively catalyze 77.5 % hydrolysis of N-acylated-L-homoserine lactone (AHL), a critical bacterial quorum sensing (QS) signal in biofilm construction. Consequently, AHL degradation downregulated the expression of QS-related genes in antibiotic resistant bacteria and significantly prevented biofilm formation. As a proof of concept, Zn−Nx−C-coated iron plates prevented 80.3 % biofouling after a month exposure in river. Overall, our study provides a nano-enabled contactless antifouling insight to avoid AMR evolution by engineering nanomaterials for mimicking the key bacterial enzymes (e.g., lactonase) functioning in biofilm construction.  相似文献   

19.
Bacterial biofilms are a serious global health concern, often responsible for persistent infections. New strategies to prevent and treat bacterial infections by eradication of the biofilms are urgently needed. A novel ruthenium-based compound is reported in this study that functions as both a boronic acid-decorated photosensitizer (PS) and a light-triggered nitric oxide (NO) releasing agent. The compound can selectively attach to the bacterial membrane and biofilms and it is highly potent at eradicating Pseudomonas aeruginosa biofilms through the simultaneous release of NO and reactive oxygen species (ROS). The compound, which is more effective than clinical antibiotic tobramycin, also has excellent bacterial specificity and shows no significant cytotoxicity to human cells. The results reveal potential applications of this innovative dual-functional photoactivated ruthenium compound to combat bacterial biofilm infections.  相似文献   

20.
The huge diversity of hierarchical micro-/nano-rigid structures existing in biological systems is increasingly becoming a source of inspiration of materials scientists and engineers to create next-generation advanced functional materials. In the past decades, these multiscale hierarchical structures have been intensively investigated to show their contributions to high performance in mechanical properties. Recently, accompanied with the development of nanotechnology, some biologically hierarchical rigid structures have been duplicated and mimicked in artificial materials through hierarchical organization of micro-/nano-building blocks. In this critical review, we will present biological rigid structural models, functional micro-/nano-building blocks, and hierarchical assembly techniques for the manufacture of bio-inspired rigid structural functional materials (177 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号