首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200 μm and 270 μm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420 kg m−3 and 0.041 kg m−1 s−1, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065–214.9 cm3 h−1 and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data.  相似文献   

2.
Theoretical studies have been made to determine the pressure drops caused by abrupt flow area expansion/contraction in small circular pipes for two‐phase flow of air and water mixtures at room temperature and near atmospheric pressure. Two‐phase computational fluid dynamics (CFD) calculations, using Eulerian–Eulerian model (with the air phase being compressible for pipe contraction case) are employed to calculate the pressure drop across sudden expansion and contraction. The pressure drop is determined by extrapolating the computed pressure profiles upstream and downstream of the expansion/contraction. The larger and smaller tube diameters are 1.6 and 0.84 mm, respectively. Computations have been performed with single‐phase water and air, and two‐phase mixtures in a range of Reynolds number (considering all‐liquid flow) from 1000 to 12 000 and flow quality from 1.2 × 10?3 to 1.6 × 10?2. The numerical results are validated against experimental data from the literature and are found to be in good agreement. The expansion and contraction loss coefficients are found to be different for single‐phase flow of air and water, and they agreed reasonably well with the commonly used theoretical predictions. Based on the numerical results as well as experimental data, correlations are developed for two‐phase flow pressure drops caused by the flow area contraction as well as expansion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
An experimental study of the interaction and coalescence of viscous drops moving through a cylindrical capillary tube under low Reynolds number conditions is presented. The combined pressure- and buoyancy-driven motion of drops in a Newtonian continuous phase is examined. The interaction between two drops is quantified using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Measurements of the radius of the liquid film formed between the two drops at the instant of apparent contact are used in conjunction with a planar film drainage model to predict the dependence of the coalescence time on drop size ratio for coalescence of low viscosity-ratio drops in the axisymmetric configuration.  相似文献   

4.
The pressure drop has a significant importance in multiphase flow systems. In this paper, the effect of the volumetric quality and mixture velocity on pressure drop of gas-liquid flow in horizontal pipes of different diameters are investigated experimentally and numerically. The experimental facility was designed and built to measure the pressure drop in three pipes of 12.70, 19.05 and 25.40 mm. The water and air flow rates can be adjusted to control the mixture velocity and void fraction. The measurements are performed under constant water flow rate (CWF) by adding air to the water and constant total flow rate (CTF) in which the flow rates for both phases are changed to give same CTF. The drift-flux model is also used to predict the pressure drop for same cases. The present data is also compared with a number of empirical models from the literature. The results show that: i) the pressure drop increases with higher volumetric qualities for the cases of constant water flow rate but decreases for higher volumetric qualities of constant total flow rate due to the change in flow pattern. ii) The drift-flux model and homogenous model are the most suitable models for pressure drop prediction.  相似文献   

5.
Liquid film thickness inside two swirl injectors for direct injection (DI) gasoline engines was measured at different injection pressure conditions ranging from 2.0 to 7.0 MPa and then previous analytical and empirical equations were examined from the experimental results. Based on the evaluation, a new equation for the liquid film thickness inside the swirl injectors was introduced. A direct photography using two real scale transparent nozzles and a pulsed light source was employed to measure the liquid film thickness inside the swirl injectors. The error in the liquid film thickness measurement, generated from different refractive indices among transparent nozzle, fuel and air, was estimated and corrected based on the geometric optics. Two injectors which have different nozzle diameter and nozzle length were applied to introduce a more general empirical equation for the liquid film thickness inside the pressure swirl injectors. The results showed that the liquid film thickness remains constant at the injection pressures for direct injection gasoline engines while the ratio of nozzle length to nozzle diameter (L/D) shows significant effect on the liquid film thickness. The previously introduced analytical and empirical equations for relatively low injection pressure swirl injectors overestimated the effect of injection pressure at the operating range of high pressure swirl injectors and, in addition, the effect of L/D ratio and swirler geometry was rarely considered. A new empirical equation was suggested based on the experimental results by taking into account the effects of fuel properties, nozzle diameter, nozzle length and swirler geometry.  相似文献   

6.
The paper is dealing with a research carried out at the Institute of Thermal-Fluid Dynamics to investigate the rewetting of a hot surface. The rewetting of the hot surface by spray cooling has been analyzed in previous works. After the droplet impingement, the liquid film falls along the surface, and rewetting by falling film takes place. The experiment was characterized by a 1-dimensional liquid spray, i.e., drops having a uniform, constant diameter, impinging on the heated surface. The cooling rate of the hot surface has been detected as a function of wall temperature, drop diameter and velocity, and impact point of the spray. The working feature of the spray is based on the varicose rupture of the liquid jet: imposing a periodic (symmetrical) perturbation with appropriate amplitude and frequency on the jet surface, the flow is “constrained” to break soon after leaving the nozzle, eventually obtaining constant diameter drops, depending on the nozzle diameter and liquid velocity. In this paper, previous results with spray cooling are compared with experimental runs in which the spray injection is replaced with a falling film all along the test section. The rewetting velocity has been calculated from the response of the thermocouples placed on the heated wall and using a digital image system based on the video image registered during the runs.  相似文献   

7.
Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum.  相似文献   

8.
The coalescence of two identical viscous-liquid drops in weightlessness under the action of surface tension is considered. Inside the drops, the flow is described by the Navier-Stokes and Poisson (for the pressure) equations. On the liquid free surface in contact with the medium at rest, the dynamic and kinematic conditions are used. The problem is solved by a finite-difference method. The coalescence of the drops and the subsequent oscillations of the resultant drop are investigated. The results are compared with the known data.  相似文献   

9.
The literature pertinent to various aspects of drop evaporation on a heated surface is reviewed. Both the laser shadowgraphic and direct photographic methods are employed to study thermal stability and flow structures in evaporating drops in all heating regimes. It is revealed that four flow regions exist in stable and unstable type drops at low liquid-film type vaporization regime. As the surface temperature is raised, the flow regions reduce to two. In the nucleate-boiling type vaporization regime, the interfacial flow structure changes due to a reduction in the Marangoni number as well as the dielectric constant of the liquid. An evidence of bubble growth in the drops is disclosed. The micro explosion of drops is found to occur in the transition-boiling type heating range. No drop explosion takes place in the spheriodal vaporization regime except when the drop rolls on to a microscratch on the heating surface. It is concluded that the mechanisms for triggering drop explosion include the spontaneous nucleation and growth phenomena and the destabilization of film boiling.  相似文献   

10.
在控制再生式液体发射药火炮燃烧稳定性的背景下,采用挂滴装置和高速摄影系统开展了 HAN基液体发射药 LP1846液滴组内部相互作用对着火、燃烧过程影响的研究。观测了液满间相互作用对它们所经历的四个特征过程的影响。定量测试液滴组平均着火延迟期、着火温度等特性参数与环境温度和液滴中心间距的关系。实验发现:在一定条件下,液滴组将出现聚并现象。最后.建立了一个工程简化模型,理论计算与实验数据吻合较好。这个工作对控制燃烧稳定性和抑制压力振荡有一定的指导意义。  相似文献   

11.
A novel principle of manipulation of discrete drops using concentration-capillary forces controlled by the thermal action of a light beam is proposed. The drops are created by the light beam in a thin layer of absorbing solution and in a film of that solution beneath an air bubble in the cell. The possibility of transporting both a single drop and a drop in an air bubble by means of a light beam is demonstrated. For the first time two drops are made to coalesce on a solid substrate by bringing them into contact by means of a light beam.  相似文献   

12.
The method of combining asymptotic expansions (with respect to a large Peclet number) is used to investigate the three-dimensional problem of steady-state convective diffusion to the surface of drops, around which flows a laminar stream of a viscous incompressible liquid whose velocity field is assumed to be known from the solution of the corresponding hydrodynamic problem. It is shown that for large Peclet numbers the heat and mass transfer between drops is completely determined by the mutual arrangement of special (starting or ending at the surface of a drop) lines of flow; under these circumstances, in the flow there are chains of drops which have no mutual diffusional effect on one another, and the total diffusional flow to a drop is determined by diffusion to particles located upstream in the same chain. For the case where the distance between the drops in the chain is much leas than P1/2 (P is the Peclet number), formulas for the distribution of the concentration and the total diffusional flow to the surface of each drop are obtained. It is shown that the total diffusional flow to the surface of a drop approaches zero in inverse proportion to its order number in a chain, which generalizes [1], in which the axisymmetric case is considered. A solution of the diffusional case is obtained for the case where there are critical lines at the surface of the drop. The problem is solved to the end if the singular flow lines are not closed and depart to infinity. With the presence of a region of closed circulation behind the drops, the problem is reduced to an integral equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika, Zhidkosti i Gaza, No. 2, pp. 44–56, March–April, 1978.The author thanks Yu. P. Gupalo and Yu. S. Ryazantsev for their interest in the work.  相似文献   

13.
 This paper presents results of experimental and analytical investigation on molten alloy drop fragmentation in water pool. Emphasis is directed towards delineating the roles which melt to coolant heat transfer and melt solidification play in the fragmentation process. The strong impact of coolant temperature upon fragmentation process is addressed. A set of 23 drop fragmentation experiments were performed, in which 8 experiments employed a low melting point alloy, cerrobend-70 and 15 experiments using Pb–Bi eutectic alloy as drop fluid. The results show strong impact of coolant temperature on particle size distribution of the fragmented drops. A linear stability analysis of the interface between the two liquid fluids with thin crust growing between them, is performed. A modified dimensionless Aeroelastic number, for Kelvin–Helmholtz instability, is obtained and used as a criteria for fragmentation of molten drops penetrating into another liquid coolant media with lower temperature. The nondimensionalized mean diameter of the fragmented particles is correlated with the Aeroelastic number. Received on 26 March 2000  相似文献   

14.
The article discusses the thinning of a thin flat film of liquid between coalescing bubbles or coalescing drops due to motion of the liquid under the action of capillary forces, under drag conditions of the surfaces of the film. A study was also made of the outflow of a liquid from a film separating a bubble (drop) from a solid surface. The problem of the decrease in thickness and subsequent breakaway of thin liquid films is of interest in investigations of the kinetics of coalescence and coagulation and in the theory of the stability of foams and lyophobic colloids in the presence of surfactants or electrolytes, as well as in the theory of heterogeneous boiling. Information on some work and on special characteristics of the statement of the problem may be found in [1].Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp, 39–48, March–April, 1973.  相似文献   

15.
Crown behavior and bubble entrainment during a drop impact on a liquid film   总被引:2,自引:0,他引:2  
Physical and mathematical models are established to simulate a single liquid drop impinging onto a liquid film using the coupled level set and volume of fluid method. The crown liquid sheet after impact is obtained, which coincides well with the experimental results in literatures. Influence of Weber number, Reynolds number and the dimensionless film thickness on the crown diameter and height is discussed quantitatively. Results indicate that the crown diameter is independent of the two non-dimensional numbers, while it can be increased by reducing the dimensionless film thickness. The crown height increases with the increasing of Weber number, but Reynolds number has small effect on it. Mechanism of the jet formation process is revealed by analyzing pressure distribution and velocity field in the liquid. It is found that both pressure difference in the neck region and velocity discontinuity can greatly affect the jet formation. Besides, the bubble entrainment phenomenon during a liquid drop impact on a liquid film is successfully captured with this numerical method. It is found that the increase in both impact Weber number and the drop diameter contributes to the emerging of bubble rings.  相似文献   

16.
A study is made of the influence of a film of soluble surface-active substance on the emulsification of drops of a viscous liquid in the field of an acoustic wave. The drops are in an ideal incompressible fluid. It is assumed that the drop radius is much less than the acoustic wavelength but much greater than the capillary radius. The motion of the drops is not taken into account.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 160–164, September–October, 1981.I thank V. A. Briskman for constant interest in the work.  相似文献   

17.
The effect of salt spray corrosion on the air-side hydrophilicity and the thermal-hydraulic performance of copper-fin heat exchangers were experimentally investigated. Artificial accelerated method of salt spray corrosion on the copper-fin heat exchangers was used for simulating the actual corroded heat exchangers. The experimental results show that, the contact angles increase with the increase of salt spray corrosion hours, which results in the degradation of the hydrophilicity of copper fin. The air-side heat transfer coefficients decrease and pressure drops increase with the increase of corrosion hours. The effect of salt spray corrosion on the heat transfer coefficients and pressure drops become more obvious with the increase of inlet air velocity. The heat transfer coefficients of the corroded copper-fin heat exchangers decrease by 4.4–34.0% and the pressure drop increase by 5.2–26.1% comparing with those of the uncorroded copper-fin heat exchanger at the inlet air velocity ranging from 0.5 to 2.0 m/s.  相似文献   

18.
Two models are presented for predicting magnetohydrodynamic pressure drop in two phase gas—liquid flows of conducting fluids for large values of Hartmann number. The first of these models treats the gas—liquid mixture as a single homogeneous pseudofluid with averaged mixture properties. The second model assumes that the flow pattern is one where the liquid is displaced to the duct walls as a liquid film and the gas flows in the central core. It is shown that the two models do not differ significantly in their predictions of overall pressure drop for vaporising two-phase flow of potassium. There is little experimental data available for testing the models but very satisfactory agreement is found between measurements of magnetic pressure drop of NaK—nitrogen mixtures at low quality and the predictions of both models.  相似文献   

19.
The equilibrium cross sectional shape and stability of a liquid drop moving in a gaseous medium is studied analytically. Such liquid drops appear as the final product in numerous industrial spraying and atomisation processes. Raindrops falling at their terminal speed can also be described by the present model. The equilibrium shape is formed by the interaction of two main factors; the dynamic pressure distribution in the gaseous medium which tends to deform the liquid drop into an oblate shape and the surface tension which tends to restore the spherical shape. The meridional shape of the liquid drop is obtained as a power series in the Weber number. The linear stability of the deformed shapes described above to small surface disturbances is studied. The stability analysis shows the effect of the surrounding gas flow on the natural frequencies of oscillation (vibration) of the liquid drop. The liquid drop is found to be stable in the region of low Weber numbers studied with a decrease in oscillation frequency proportional to the Weber number. This is in agreement with existing experimental data. Extrapolation of the results here lead to a Weber number of W=5.33 for breakup, again in agreement with experimental correlations.  相似文献   

20.
A physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with evaporative heat transfer. Sample solutions to the model were obtained for both constant wall temperature and constant wall heat flux conditions. Results are provided for evaporation rate, liquid film thickness, liquid and vapor phase pressure and temperature distributions. In addition to the sample calculations that were used to illustrate the transport characteristics, computations based on the current model were performed to generate results for comparisons with the experimental results of Qu and Mudawar (2004) where two different mass flow rates of the working fluid were used in the experiment. The comparisons of total pressure drops with the experimental data of Qu and Mudawar (2004) cover the wall heat flux range of 142.71-240 W/cm2 with a total channel mass flux of 400.1 kg/m2 s and also the wall heat flu range of 99.54-204.39 W/cm2 with total channel mass flux of 401.9 kg/m2 s. The calculated results from the current model match closely with those of Qu and Mudawar (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号