首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Compounds (2‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L1 ), 2‐(3,5‐di‐tert‐butyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L2 ) , and 2‐(3,5‐diphenyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L3 ) were prepared using the synthetic routes reported in literature. These compounds were reacted with [NiCl2(DME)2] or [NiBr2(DME)2] under appropriate reaction conditions to afford six new nickel(II) compounds ([NiCl2( L1)] ( 1 ), [NiCl2( L2 )] ( 2 ), [NiCl2( L3 )] ( 3 ), [NiBr2( L1 )] ( 4 ), [NiBr2( L2 )] ( 5 ) and [NiBr2( L3 )] ( 6 )). The new nickel(II) pre‐catalysts catalyze the oligomerization of ethylene, in the presence of ethylaluminium dichloride as co‐catalyst, to produce butenes, hexenes, octenes and higher carbon chain ethylene oligomers with very little Friedel‐Crafts alkylation products when the reactions were run in toluene.  相似文献   

2.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

3.
Nine CuII complexes ( I – IX ) containing the azide ion and bis‐2,6‐(pyrazol‐1‐yl)pyridine (pp), bis‐2,6‐(pyrazol‐1‐yl)pyridine (dmpp), and 2‐(pyrazol‐1‐yl)‐6‐(3,5‐dimethylpyrazol‐1‐yl)pyridine (mpp), which are derivatives of pyrazolylpyridine, were prepared in nonaqueous medium. These complexes were characterized by elemental analyses and IR spectroscopy. Crystals of one of these complexes [CumppClN3 ( VII )] were prepared in suitable size, and a molecular structure of this complex was obtained with X‐ray diffraction method. Complexes were examined by thermogravimetry and differential scanning calorimetry methods. Thermal decomposition was observed in complexes including two azide groups similar to that seen in explosives. In the complexes containing one azide group, formation of the CuI complexes was observed after thermal decomposition of the azide group.  相似文献   

4.
The dinuclear nickel(II) complex of the asymmetric ligand 1‐[N,N‐bis(2‐pyridylmethyl)amino]‐3‐[2‐(3,5dimethyl‐1H‐pyrazol‐1‐yl)ethoxy]‐2‐hydroxypropane (HL1) was prepared as a model for the active site of urease. The novel complex [Ni2(L1)(MeCOO)(ClO4)(EtOH)2](ClO4) · 0.5 Et2O ( 1 ) crystallizes in the triclinic space group P 1 with a = 11.639(2) Å, b = 12.571(3) Å, c = 16.341(3) Å, α = 92.29°, β = 106.54°, and γ = 113.73°. The nickel ions (c.n. 6) are bridged by the alkoxy donor substituent of the ligand and an acetate anion. The dinuclear nickel(II), cobalt(II), and zinc(II) complexes of the ligands 1‐[N,N‐bis(2‐benzimidazolylmethyl)amino]‐3‐[2‐(3,5‐dimethyl‐1 H‐pyrazol‐1‐yl)ethoxy]‐2‐hydroxypropane (HL2), N‐methyl‐N,N',N'‐tris(2‐benzimidazolylmethyl)‐2‐hydroxy‐1,3‐diaminopropane (HL3), and N,N,N',N'‐tetrakis(2‐benzimidazolylmethyl)‐2‐hydroxy‐1,3‐diaminopropane (HL4) were investigated for their activity towards the hydrolysis of the test substrate p‐nitrophenyl acetate (npa) in ethanol‐water (1 : 1). The second‐order rate constants for the cleavage of npa were determined for all complexes. The profile of the pH dependence indicates that a hydroxide initially binds to the metal ion. The bound nucleophile subsequently attacks the test substrate. The results are discussed in terms of a refined model for the structure activity relationships of the dinuclear active site of urease.  相似文献   

5.
Condensation of 4‐aminoantipyrine with ethyl acetoacetate, ethyl benzoylacetate, and ethyl cyanoacetate furnished the corresponding ethyl 3‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)aminoacrylate and 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide derivatives. The aminoacrylates derivatives react with acetonitrile and sodium hydride to give 2‐amino‐6‐methyl‐1‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)‐4‐pyridone. Reaction of the cyanoacetamide derivative with dimethylformamide‐dimethylacetal (DMF‐DMA) afforded 2‐cyano‐N‐[1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐pyrazol‐4‐yl]‐2‐(N,N‐dimethylamino)methylene acetamide in high yield. Treatment of the latter with 5‐aminopyrazole derivatives afforded the corresponding pyrazolo[2,3‐a]pyrimidines. 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide also reacts with heterocyclic diazonium salts to give the corresponding pyrazolo[5,1‐c]‐1,2,4‐triazine derivatives. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:508–514, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20046  相似文献   

6.
A copper(I)‐based metal–organic framework ({[Cu2Br2(pypz)]n?nH2O} (Cu—Br–MOF) [pypz=bis[3,5‐dimethyl‐4‐(4’‐pyridyl)pyrazol‐1‐yl] methane] has been synthesized by using an elongated and flexible bridging ligand. The structure analysis reveals that each pypz ligand acts as a tritopic ligand connected to two Cu2Br2 dimeric units, forming a one‐dimensional zig–zag chain, and these chains further connected by a Cu2Br2 unit, give a two‐dimensional framework on the bc‐plane. In the Cu2Br2 dimeric unit, the copper ions are four coordinated, thereby possessing a tetrahedral geometry; this proves to be an excellent heterogeneous catalyst for the aerobic homocoupling of arylboronic acids under mild reaction conditions. This method requires only 3 mol % of catalyst and it does not require any base or oxidant—compared to other conventional (Cu, Pd, Fe, and Au) catalysts—for the transformation of arylboronic acids in very good yields (98 %). The shape and size selectivity of the catalyst in the homocoupling was investigated. The use of the catalyst was further extended to the epoxidation of olefins. Moreover, the catalyst can be easily separated by simple filtration and reused efficiently up to 5 cycles without major loss of reactivity.  相似文献   

7.
The Zn atom in dichloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)­methane]zinc(II), [ZnCl2(C11H16N4)], (I), is tetra­hedrally coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand and two terminal Cl atoms. The mol­ecule has no crystallographic symmetry. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazol­yl)methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to yield inter­molecular C—H⋯Cl contacts, thereby forming a one‐dimensional zigzag chain extending along the b axis. On the other hand, in di‐μ‐chloro‐bis­{chloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane]cadmium(II)}, [Cd2Cl4(C11H16N4)2], (II), each of the two crystallographically equivalent Cd atoms is penta­coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand, and by one terminal and two bridging Cl anions. The mol­ecule has a crystallographic centre of symmetry located at the mid‐point of the Cd⋯Cd line. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazolyl)­methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to produce pairwise inter­molecular C—H⋯Cl contacts, thereby affording chains of mol­ecules running along the c axis.  相似文献   

8.
A novel synthetic method for the preparation of 5‐aryl‐7‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)‐2‐phenylpyrazolo[1,5‐c]‐pyrimidines and 1‐(5‐aryl‐2‐phenylpyrazolo[1,5‐c]pyrimidin‐7‐yl)‐3‐methyl‐1H‐pyrazol‐5‐ols is provided by condensative cyclization of 5‐aryl‐7‐hydrazino‐2‐phenylpyrazolo[1,5‐c]pyrimidines with 1,3‐dicarbonyl compounds. The study of the more reactive position for electrophilic substitusion reactions on such ring system was also achieved.  相似文献   

9.
Four bis(pyrazolyl)pyridine Zn(II) and Cu(II) carboxylate complexes have been structurally elucidated and used as initiators in the ring‐opening polymerization (ROP) of ε‐carprolactone (ε‐CL). Reactions of bis(3,5‐dimethyl‐pyrazol‐1‐yl)pyridine ( L1 ) with the appropriate Zn(II) and Cu(II) carboxylates afforded the corresponding complexes; [Zn(L1)(C6H5COO)2] ( 1 ), [Zn(L1)(2‐Cl‐C6H4COO)2] ( 2 ), [Zn(L1)(OAc)2] ( 3 ) and [Cu(L1)(OAc)2] ( 4 ) in moderate to good yields. Molecular structures of compounds 1 , 2 , 3 confirmed the presence of one tridentate bound ligand L1 in the metal coordination sphere and two carboxylate anions to give five coordination number around Zn(II) and Cu(II) atoms. Complexes 1 , 2 , 3 , 4 initiated the ROP of ε‐CL at 110 °C to give polymers of moderate molecular weights. Kinetic analyses of the ROP reactions indicate pseudo ‐first‐order dependency on ε‐CL monomer and initiator. 1H NMR and mass spectral data established a coordination insertion mechanistic pathway and behaviour of 1 , 2 , 3 , 4 as initiators in the ROP of ε‐CL. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The starting (1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbonohydrazonoyl dicyanide ( 2 ) was used as key intermediate for the synthesis of 3‐amino‐2‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylazo)‐[3‐substituted]‐1‐yl‐acrylonitrile derivatives ( 3 – 10 ). In addition, nitrile derivative 2 reacted with hydrazine hydrate or malononitrile to afford the corresponding 3,5‐diaminopyrazole 11 and enaminonitrile derivative 13 , respectively. On the other hand, compound 3 was subjected to react with malononitrile, acetic anhydride, triethylorthoformate, N,N‐dimethylformamide (DMF)‐dimethylacetal, thiourea, and hydroxylamine hydrchloride to afford antipyrine derivatives 16 – 21 . Moreover, the reaction of enaminonitrile 3 with carbon disulfide in pyridine afforded the pyrimidine derivative 22 , whereas, in NaOH/DMF followed by the addition of dimethyl sulphate afforded methyl carbonodithioate 24 . The reaction of enaminonitrile derivatives 3 – 5 with phenylisothiocyanate afforded the thiopyrimidine derivatives 25a – c . Finally, the enaminonitrile 4 reacted with 3‐(4‐chloro‐phenyl)‐1‐phenyl‐propenone to afford the pyridine derivative 27 . The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 13C‐NMR, 1H–NMR, and MS).  相似文献   

11.
Reactions of 2‐[1‐(3,5‐dimethylpyrazol‐1‐yl)ethyl]pyridine (L1) and 2‐[1‐(3,5‐diphenylpyrazol‐1‐yl)ethyl]pyridine (L2) with the [Pd (COD)Cl2] or [Pd (COD)MeCl] produced palladium (II) complexes [Pd( L1 )ClMe] ( 1 ), [Pd( L1 )Cl2] ( C2 ), [Pd( L2 )ClMe] ( 3 ), and [Pd( L2 )Cl2] ( 4 ) in quantitative yields. Solid state structures of complexes 1 , 3 and 4 established the formation of mononuclear compounds, containing one bidentate ligand unit per metal atom, to give square planar complexes. All the other spectroscopic characterization data and elemental analyses were consistent with the observed structures. All the palladium (II) complexes 1–4 gave active catalysts in the methoxycarbonylation of 1‐octenes. The catalysts demonstrated 100% chemoselectivities towards esters and favored the formation of linear isomers. Reaction conditions such as the type of phosphine derivative, acid promoter, solvent system, time, pressure and temperature have been investigated and shown to affect both the catalytic activity and regio‐selectivity of the catalysts. Solid‐angle modelling established the comparable steric contributions from the ligands, consistent with the similar regioselectivities of the resultant catalysts.  相似文献   

12.
The self‐assembly of metal–polydentate ligands to give supramolecular tetrahedral complexes is of considerable current interest. A new ligand, 4‐benzyl‐2‐[1‐(2‐{[3‐(4‐benzylpyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]methyl}benzyl)‐1H‐pyrazol‐3‐yl]pyridine (L), with chelating pyrazolyl–pyridine units substituted on the 4‐position of the pyridyl ring with benzyl units, has been synthesized and fully characterized. The self‐assembly of L with cobalt(II) gave rise to a tetrahedral cage (hexakis{μ‐4‐benzyl‐2‐[1‐(2‐{[3‐(4‐benzylpyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]methyl}benzyl)‐1H‐pyrazol‐3‐yl]pyridine}perchloratotetracobalt(II) octakis(perchlorate) acetonitrile undecasolvate, [Co4(ClO4)(C38H32N6)6](ClO4)7·11CH3CN) with approximate T symmetry. The X‐ray crystal structure of the cage, i.e. [Co4L6ClO4](ClO4)7, shows that the substituted benzyl groups are oriented away from the centres of their respective ligands towards the CoII vertices, making small outward‐facing pockets from three benzyl rings at the corners of the tetrahedron.  相似文献   

13.
One‐pot synthesis of 3‐(3‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl)‐2H‐chromen‐2‐ones was achieved via the multicomponent reaction of purpald, acetyl acetone, and different derivatives of 3‐(2‐bromo‐acetyl)‐2H‐chromen‐2‐one in absolute ethanol. All the synthesized compounds were characterized by analytical and spectral data.  相似文献   

14.
Recrystallization of [MoO2Cl{HC(3,5‐Me2pz)3}]Cl [where HC(3,5‐Me2pz)3 is tris(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane] led to the isolation of large quantities of the dinuclear complex dichlorido‐2κ2Cl‐μ‐oxido‐κ2O:O‐tetraoxido‐1κ2O,2κ2O‐[tris(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐1κN2)methane]dimolybdenum(IV) acetonitrile monosolvate, [Mo2Cl2O4(C16H22N6)]·CH3CN or [{MoO2Cl2}(μ2‐O){MoO2[HC(3,5‐Me2pz)3]}]·CH3CN. At 150 K, this complex cocrystallizes in the orthorhombic space group Pbcm with an acetonitrile molecule. The complex has mirror symmetry: only half of the complex constitutes the asymmetric unit and all the heavy elements (namely Mo and Cl) are located on the mirror plane. The acetonitrile molecule also lies on a mirror plane. The two crystallographically independent Mo6+ centres have drastically different coordination environments: while one Mo atom is hexacoordinated and chelated to HC(3,5‐Me2pz)3 (which occupies one face of the octahedron), the other Mo atom is instead pentacoordinated, having two chloride anions in the apical positions of the distorted trigonal bipyramid. This latter coordination mode of MoVI was found to be unprecedented. Individual complexes and solvent molecules are close‐packed in the solid state, mediated by various supramolecular contacts.  相似文献   

15.
The title compound {2‐[3,5‐bis(trifluoromethyl)‐1H‐pyrazol‐1‐ylmethyl]‐6‐(3,5‐dimethyl‐1H‐pyrazol‐1‐ylmethyl)pyridine}methylpalladium(II) tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, [Pd(C18H18F6N5)][B(C8H3F6)4], crystallizes as discrete cations and anions. The cation possesses a pseudo‐twofold axis about which positional disorder of the tridentate ligand is exhibited. The four substituents on the two pyrazole rings exhibit CH3/CF3 disorder, while all other atoms are ordered. Thus, this disorder can be conveniently described `locally' as compositional, while `globally' for the entire tridentate ligand it is positional. The anion also exhibits typical rotational positional disorder in three of the CF3 groups. All disordered CF3 groups were modeled with idealized C3v geometry.  相似文献   

16.
Cyanoacylation of 2‐amino‐tetrahydrobenzothiophene‐3‐carboxylate ethyl ester with 3‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)‐3‐oxopropanenitrile afforded cyanoacetamide 2 . The later was utilized as key intermediate for the synthesis of 3‐substituted 2‐iminocoumarins 3 , 4 , 5 , 6 and acrylamides 7a , b via Knoevenagel condensation with 2‐hydroxy‐1‐naphthaldehyde; 2‐hydroxybenzaldehyde; 1‐nitrosonaphthalen‐2‐ol; 7‐hydroxy‐5‐methoxy‐2‐methyl‐4‐oxo‐4H‐chromene‐6‐carbaldehyde; 4‐dimethylamino‐benzaldehyde; and 4‐piperidin‐1‐yl‐benzaldehyde in EtOH/piperidine. The derivatives 7a , b did not afford the pyrazoles 8a , b upon treating with phenyl hydrazine. Furthermore, coupling of 2 with 4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one and 4,6‐dimethyl‐1H‐pyrrolo[2,3‐b]pyridin‐3‐amine afforded the hydrazone derivatives 9 and 10 , respectively. The later derivative 10 was cyclized in acetic acid to afford the pyridopyrazolotriazine 11 . Finally, 2 was treated with dimethylformamide‐dimethylacetal (DMF‐DMA) to afford the dimethylaminoacrylamide 12 which underwent transamination with 4,6‐dimethyl‐1H‐pyrrolo[2,3‐b]pyridin‐3‐amine to afford the pyrazole 13 . Cyclization of compound 13 in acetic acid or pyridine was unsuccessful. The antitumor and antioxidant activities of the synthesized products were evaluated; several were found to exhibit promising antioxidant activities. J. Heterocyclic Chem., (2011).  相似文献   

17.
The novel ZnII coordination polymer poly[{μ4‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐3‐yl]butanedioato}zinc(II)], [Zn(C12H9N3O4)]n, has been synthesized hydrothermally and structurally characterized. The results demonstrate that the complex shows two‐dimensional neutral wave‐like layers. The complex was prepared by the conjugate addition reaction of 2‐(1H‐pyrazol‐3‐yl)pyridine to cis‐fumaric acid in the presence of Zn(OAc)2·2H2O (OAc is acetate) at 413 K.  相似文献   

18.
Self‐immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArN?C]2(C10H6)NiBr2 [Ar = 4‐allyl‐2,6‐(i‐Pr)2C6H2] ( 1 ), [ArN?C(Me)][Ar′N? C(Me)]C5H3NFeCl2 [Ar = Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3, Ar = 2,6‐(i‐Pr)2C6H3, and Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArN?C]2C10H6NiBr2 (Ar = 2,6‐(i‐Pr)2C6H2)], but also greatly improved the morphology of polymer particles to afford micron‐granula polyolefin. The self‐immobilization of catalysts, the formation mechanism of microspherical polymer, and the influence on the size of the particles are discussed. The molecular structure of self‐immobilized nickel catalyst 1 was also characterized by crystallographic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1018–1024, 2004  相似文献   

19.
Three pyridyl functionalized bis(pyrazol‐1‐yl)methanes, namely 2‐[(4‐pyridyl)methoxyphenyl] bis(pyrazol‐1‐yl)methane (L1), 2‐[(4‐pyridyl)methoxyphenyl]bis(3,5‐dimethylpyrazol‐1‐yl)methane (L2) and 2‐[(3‐pyridyl)methoxyphenyl]bis(pyrazol‐1‐yl)methane (L3) have been synthesized by the reactions of (2‐hydroxyphenyl)bis(pyrazol‐1‐yl)methanes with chloromethylpyridine. Treatment of these three ligands with R2SnCl2 (R = Et, n‐Bu or Ph) yields a series of symmetric 2:1 adducts of (L)2SnR2Cl2 (L = L1, L2 or L3), which have been confirmed by elemental analysis and NMR spectroscopy. The crystal structures of (L2)2Sn(n‐Bu)2Cl2·0.5C6H14 and (L3)2SnEt2Cl2 determined by X‐ray crystallography show that the functionalized bis(pyrazol‐1‐yl)methane acts as a monodentate ligand through the pyridyl nitrogen atom, and the pyrazolyl nitrogen atoms do not coordinate to the tin atom. The cytotoxic activity of these complexes for Hela cells in vitro was tested. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号