首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
DTA and TG studies in air were carried out for hydrothermally prepared rhombohedral double carbonates of dolomite type, CaMg(CO3)2, CaMn(CO3)2, CdMg(CO3)2, CdMn(CO3)2 and CdZn(CO3)2. The solid decomposition products in air have been compared to those obtained under hydrothermal conditions with CO2 pressure. The dolomite [CaMg(CO3)2] decomposes in two stages both in air as well as under high CO2 pressure. The other carbonates studied, follow a single stage decomposition in air and a two stage decomposition under hydrothermal condition. In air, the manganese containing carbonates CaMn(CO3)2 and CdMn(CO3)2, decompose to form mixed oxides of CaMnO3 and CdMnO3 respectively, while CdMg(CO3)2 and CdZn(CO3)2 decompose to their respective two mono oxides.  相似文献   

2.
DTA and TG studies in air were carried out for hydrothermally prepared rhombohedral double carbonates of dolomite type, CaMg(CO3)2, CaMn(CO3)2, CdMg(CO3)2, CdMn(CO3)2 and CdZn(CO3)2. The solid decomposition products in air have been compared to those obtained under hydrothermal conditions with CO2 pressure. The dolomite [CaMg(CO3)2] decomposes in two stages both in air as well as under high CO2 pressure. The other carbonates studied, follow a single stage decomposition in air and a two stage decomposition under hydrothermal condition. In air, the manganese containing carbonates CaMn(CO3)2 and CdMn(CO3)2, decompose to form mixed oxides of CaMnO3 and CdMnO3 respectively, while CdMg(CO3)2 and CdZn(CO3)2 decompose to their respective two mono oxides.
Zusammenfassung Mittels DTA und TG in Luft werden die hydrothermisch hergestellten rhomboedrischen Doppelkarbonate (Dolomittyp) CaMg(CO3)2, CaMn(CO3)2, CdMg(CO3)2, CdMn(CO3)2 und CdZn(CO3)2 untersucht. Die in Luft erhaltenen festen Zersetzungsprodukte wurden mit denen verglichen, die unter hydrothermischen Bedingungen mit CO2-Druck entstehen. Dolomit zersetzt sich sowohl in Luft als auch unter hohem CO2-Druck in zwei Schritten. Die übrigen untersuchten Karbonate zersetzen sich in Luft in einem, unter hydrothermischen Bedingungen in zwei Schritten. In Luft zersetzen sich die magnesiumhaltigen Karbonate CaMn(CO3)2 und CdMn(CO3)2 unter Bildung der Mischoxide CaMnO3 und CdMnO3, während aus CdMg(CO3)2 und CdZn(CO3)2 jeweils die entsprechenden beiden Monoxide entstehen.
  相似文献   

3.
This work investigates the thermal decomposition of magnesian kutnahorite, which belongs to the dolomite group.The DTA curve measured in static air using a small amount of sample (5.0 mg) is quite different from those published previously. This difference might be due to the effect of a self-generated CO2 atmosphere.In a CO2 flow of 100 ml min?1, magnesian kutnahorite decomposes in four steps. Mg-kutnahorite → CaCO3 + Mg2MnO4 + Mn3O4 + MgO → CaCO3 + CaMnO3 + MgO → CaCO3 + CaMnO3 + Ca2MnO4 + MgO → CaMnO3 + Ca2MnO4 + MgO + CaO.However, in a mixed gas flow of CO2 at 95 ml min?1 and CO at 5 ml min?1, it decomposes, like dolomite, in two steps. Mg-kutnahorite → CaCO3 + (Mg,Mn)O- → (Ca, Mn)O + (Mg,Mn)O-.It has been found that the equilibrium redistribution of Mn between (Ca, Mn)O- and (Mg, Mn)O- is achieved at the second decomposition step. This is supported by theoretical considerations.Consequently, when the O2 partial pressure in the atmosphere is low enough to keep Mn in a bivalent state, the Mn bearing dolomite group mineral decomposes in a similar manner to dolomite itself.  相似文献   

4.
采用H2SO4/HNO3混酸处理得到不同氧化程度的多壁碳纳米管(MWCNT-COOH),再通过与4,4′-二苯基甲烷二异氰酸酯(MDI)、1,4-丁二醇(BDO)的预聚和扩链反应构建碳纳米管/聚氨酯(MWCNT-COOH/PU)杂化膜。利用傅里叶红外光谱(FTIR)、拉曼光谱(Raman)和透射电子显微镜(TEM)等分析表征多壁碳纳米管结构;探讨了多壁碳纳米管氧化程度和填充量对MWCNTCOOH/PU杂化膜的形貌和CO2、N2渗透性能的影响。结果表明,混酸处理后的多壁碳纳米管带有一定的含氧基团,并随氧化程度的提高,多壁碳纳米管的拉曼光谱G峰和D峰的强度之比(ID/IG)有所增大;氧化程度对多壁碳纳米管在溶剂和杂化膜中的分散性有较大影响,氧化程度越高,分散性越好;杂化膜的CO2、N2渗透性及CO2/N2渗透选择性随多壁碳纳米管氧化程度的增加有所增大,而随多壁碳纳米管填充量的增加表现出先增大后减小的趋势,当氧化程度较高的多壁碳纳米管(H-MWCNT-COOH)填充量为1.0wt%时,H-MWCNT-COOH/PU杂化膜的CO2渗透系数为67.8 Barrer,CO2/N2渗透选择性可达45,表明适量填充MWCNT-COOH能显著提高MWCNT/PU杂化膜的CO2渗透性及CO2/N2的渗透选择性。  相似文献   

5.
采用H2SO4/HNO3混酸处理得到不同氧化程度的多壁碳纳米管(MWCNT-COOH),再通过与4,4’-二苯基甲烷二异氰酸酯(MDI)、1,4-丁二醇(BDO)的预聚和扩链反应构建碳纳米管/聚氨酯(MWCNT-COOH/PU)杂化膜。利用傅里叶红外光谱(FTIR)、拉曼光谱(Raman)和透射电子显微镜(TEM)等分析表征多壁碳纳米管结构;探讨了多壁碳纳米管氧化程度和填充量对MWCNT-COOH/PU杂化膜的形貌和CO2、N2渗透性能的影响。结果表明,混酸处理后的多壁碳纳米管带有一定的含氧基团,并随氧化程度的提高,多壁碳纳米管的拉曼光谱G峰和D峰的强度之比(ID/IG)有所增大;氧化程度对多壁碳纳米管在溶剂和杂化膜中的分散性有较大影响,氧化程度越高,分散性越好;杂化膜的CO2、N2渗透性及CO2/N2渗透选择性随多壁碳纳米管氧化程度的增加有所增大,而随多壁碳纳米管填充量的增加表现出先增大后减小的趋势,当氧化程度较高的多壁碳纳米管(H-MWCNT-COOH)填充量为1.0wt%时,H-MWCNT-COOH/PU杂化膜的CO2渗透系数为67.8Barrer,CO2/N2渗透选择性可达45,表明适量填充MWCNT-COOH能显著提高MWCNT/PU杂化膜的CO2渗透性及CO2/N2的渗透选择性。  相似文献   

6.
采用并流共沉淀方法制备了一系列不同铬含量的Cu/ZrO2/CNTs-NH2催化剂,在固定床反应器上考察铬对催化剂催化CO2加氢合成甲醇反应性能的影响.当铬含量为1%(w),反应温度为260°C,压力为3.0MPa,原料气组成为V(H2):V(CO2):V(N2)=69:23:8,空速为3600 mL·h-1·g-1时,催化剂的促进效果最显著,甲醇收率达7.78%.氮吸附、粉末X射线衍射(XRD)、氢气程序升温脱附(H2-TPR)、X射线光电子能谱(XPS)、二氧化碳程序升温脱附(CO2-TPD)、差热分析(DTA)以及扫描电子显微镜(SEM)等表征结果表明,随着铬含量的增加,铜颗粒的粒径减小,催化剂的比表面积增大.铬的加入一方面提高了铜的分散性,抑制了ZrO2的相变和活性组分的烧结;另一方面提高了CO2的吸附量并促进CO2由弱吸附向强吸附转化,从而提高甲醇的收率;但是当铬含量大于1%时,催化剂表面Cu、Zr的总含量明显下降,降低了CO2的吸附量并且形成了超强CO2吸附物种,抑制了CO2及其中间产物的转化,从而降低了甲醇收率.  相似文献   

7.
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.  相似文献   

8.
制备了不同Ni/Al原子比的NiAl类水滑石样品,焙烧获得NiAl复合氧化物,用于N2O分解反应,研究了NiAl复合氧化物组成对催化活性的影响。在活性较高的NiAl复合氧化物表面浸渍碱金属碳酸盐溶液,制备改性NiAl复合氧化物,考察了碱金属类型(Na、K、Cs)和钾前驱物(K2CO3、K2C2O4、CH3COOK、KNO3)对改性催化剂活性的影响。用XRD、ICP-AES、FT-IR、BET、H2-TPR、XPS技术表征了催化剂的组成结构。结果表明,Ni/Al原子比为2.7的NiAl复合氧化物催化活性较高;Na、K、Cs碳酸盐改性NiAl复合氧化物均提高了催化剂活性,其中K的助剂效应最强。钾前驱物对K改性NiAl复合氧化物的催化活性有显著影响,其中碳酸钾、醋酸钾、草酸钾的加入明显提高了改性催化剂的催化活性,而加入硝酸钾反而降低了催化剂活性。  相似文献   

9.
应用QDTA/T/EGD/GC在线联同技术及其装置,测定了四种不同变质程度的煤质之DTA/EGD/GC燃烧特性曲线,从中可提供如下三方面的信息和数据:(1)依据DTA测得的燃烧特性曲线,可取得在氧化、燃烧全过程中各项热特性的表征温度。(2)依据跟踪DTA逸出气成份的浓度变化所测得的EGD曲线,可了解不同煤质在热解、着火和燃烧特性等方面的差异。(3)依据DTA/EGD曲线的演变,可截取各个反应温度下之逸出气,进行在线的GC分析。在上述实验结果的基础上,应用过氧化物学说探讨煤的低温氧化反应机理。  相似文献   

10.
The CO2 stimulus-sensitive nanoparticles based on poly(N, N-dimethylaminoethyl methacrylate)-b-poly styrene (PDMAEMA-b-PS) were prepared via surfactant-free miniemulsion reversible addition–fragmentation chain transfer (RAFT) polymerization. The as-prepared nanoparticles exhibited core–shell structure with about 120 nm in diameter. Their dispersion/aggregation in water can be adjusted by alternatively bubbling of CO2 and N2. Drug release from these nanoparticles can be accelerated (or delayed) by bubbling (or removing) of CO2.  相似文献   

11.
Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes were prepared by solution casting followed by solvent evaporation. The chemical structure of the prepared membranes was analyzed by FTIR and DSC. The sorption behavior as well as the permeabilities of the membranes for pure CO2 and N2 were investigated. The results show that the PVA/PEI/PEG membranes possess a higher permeability of CO2 and a lower permeability of N2. The membrane displays a CO2 permeability of 27 Barrer, and a N2 permeability of 3 Barrer at 25°C and 1 bar. CO2 sorption behavior of the composite membrane, which can be classified as a dual-mode sorption model, and N2 sorption behavior of the copolymeric membrane is in agreement with the Fickian diffusion model.   相似文献   

12.
The effect of sample mass, heating rate and partial pressure of carbon dioxide on TG, DTG and DTA curves for the decomposition of some common carbonates has been investigated. These variables gave a marked effect, similar in magnitude for both DTG and DTA. The effect of sample mass, or depth of undiluted sample, is shown to be due to an increase in the partial pressure of carbon dioxide within the reacting powder. This effect is most pronounced in nitrogen but is much reduced in carbon dioxide. Inert diluents have little effect on the curves since they do not increase the partial pressure of CO2. The first stage of the decomposition of dolomite (CaMg(CO3)2) varies with increasing partial pressure of carbon dioxide in an anomalous manner and hence the effects of these procedural variables (except heating rate) are not similar to those observed for magnesite (MgCO3) and calcite (CaCO3). The second stage is, however, strongly dependent on these variables and behaves in a manner that would be predicted for a sample of calcite diluted with magnesite.  相似文献   

13.
Heterogeneously catalyzed N-formylation of amines to formamide with CO2/H2 is highly attractive for the valorization of CO2. However, the relationship of the catalytic performance with the catalyst structure is still elusive. Herein, mixed valence catalysts containing Cu2O/Cu interface sites were constructed for this transformation. Both aliphatic primary and secondary amines with diverse structures were efficiently converted into the desired formamides with good to excellent yields. Combined ex and in situ catalyst characterization revealed that the presence of Cu2O/Cu interface sites was vital for the excellent catalytic activity. Density functional theory (DFT) calculations demonstrated that better catalytic activity of Cu2O/Cu(111) than Cu(111) is attributed to the assistance of oxygen at the Cu2O/Cu interface (Ointer) in formation of Ointer-H moieties, which not only reduce the apparent barrier of HCOOH formation but also benefit the desorption of the desired N-formylated amine, leading to high activity and selectivity.  相似文献   

14.
Thermogravimetry (TG), differential thermal analysis (DTA) and X-ray diffraction studies of antimony(III) oxide, (Sb2O3), in air, nitrogen and argon atmospheres have been made. In air Sb2O3 becomes oxidized to Sb2O4 above 510°. The oxidation reaction proceeds in two stages as revealed by the TG and DTA curves. The behaviour of Sb2O3 is similar in both N2 and Ar. Sb2O3 remains unaffected up to 430°, above which there is a slow, and continuous mass loss up to 550°. Above 550° Sb2O3 volatilizes resulting in an enormous weight loss. X-ray studies of the sublimate and the residue indicate the former to be the cubic form of Sb2O3 (Senarmontite) while the residue is the orthorhombic (Valentinite) structure. From the DTA curves in air, N2 and Ar, the transition temperature for the cubic to the orthorhombic modification has been estimated to be around 610°.  相似文献   

15.
The preparation of MnSO4 by reacting pyrolusite at high temperatures with SO2 generated from pyrite was followed by DTA, and the process conditions were optimized to fix the minimum time and temperature of reaction required to obtain the maximum yield of pure MnSO4 from stoichiometric amounts of reactants in a natural draught of air. The presence of MnO and Fe3O4 in the reaction products, detected by DTA, indicates that the SO2 is initially oxidized to SO3 by reducing MnO2, Mn2O3 and Fe2O3 to MnO and Fe3O4. SO3 finally attacks MnO to form MnSO4. When an intimate stoichiometric blend of pyrite and pyrolusite is heated at temperatures ranging from 873 K to 973 K for 3 hrs, about 93% of the Mn is converted to ironfree MnSO4.  相似文献   

16.
This work describes the thermal transformation of patina samples formed on the surface of dolomitic rocks used to build the Romanesque Torme's Church (Burgos, Spain). Analyses were performed using a combination of high-temperature XRD, simultaneous TG/DTA and gas mass spectrometry. The XRD analysis revealed the presence of hydrated calcium oxalates. The following three steps were proposed for the thermal transformation of the raw material: dehydration of weddellite/whewellite to form calcium oxalate, transformation of calcium oxalate to calcium carbonate, and formation of calcium oxide produced via decomposition of the calcite. DTA/TG and mass spectrometry analyses confirmed this mechanism. In addition, a high proportion of organic compounds was detected and was possibly formed via degradation of products applied for the building's conservation by the action of microorganisms attack. Mass spectrometry analysis revealed CO (and CO2) gas evolved during the transformation of CaC2O4 to CaCO3. The CO2 gas also appears at 765 °C due to the decomposition of calcium carbonate, and it appears over a large range of temperatures due to the decomposition of organic compounds. The TG analyses performed in a CO2 atmosphere were used to determine the percentages of Ca and Mg contained in dolomite, and the calcium carbonate formed by oxalate decomposition. DRIFTS and mass spectrometry results revealed the presence of several aliphatic and/or aromatic compounds containing CO groups.  相似文献   

17.
SiO2-TiO2 membranes by the sol-gel process   总被引:1,自引:0,他引:1  
The use of membranes for gas separation represents an important alternative from the viewpoint of energy conservation in industrial separation processes. Polymeric Si-Ti sols prepared from titanium isopropoxide (Ti(OPri)4) and tetraethoxysilane (TEOS) were used to deposit membranes on α-Al2O3 supports. Acetylacetone (2,4 pentanedione, acacH) and isoeugenol (2-methoxy-4-propenylphenol, isoH) were employed separately to chelate the Ti precursor in order to slow down the chemical reactivity, avoiding precipitation. The radial distribution functions (RDF) of the gels aging at room temperature were obtained. The xerogels were studied by Thermal Gravimetric (TGA) and Differential Thermal (DTA) Analysis in air. The Microporosity of the solids calcined at 773 K was determined by N2-adsorption at 77 K. The membrane thickness was determined from SEM photographs. Preliminary permeance results of the supported membranes on commercial alumina support were obtained for He, N2 and CO2 in a single gas equipment. At 773 K the separation factors α(He/CO2) and α(N2/CO2) for both membranes exceeds the theoretical Knudsen limit.  相似文献   

18.
The effects of doping cobalt oxides with different amounts of ZrO2 and ThO2 (1.5–9 mol%) on the thermal stability of Co3O4 and the re-oxidation of CoO by O2 to Co3O4 were investigated. The techniques employed were DTA, with a controlled rate of heating and cooling, X-ray diffraction, and IR spectrometry.The results obtained by DTA revealed that the addition of both Th4+ and Zr4+ (up to 6 mol%) exerted no appreciable effect on the thermal stability of Co3O4. Increasing the amount of the dopant ions to 9% resulted in no further change in the thermal stability of Co3O4 in the case of Th4+, and an increase of 16% in case of Zr4+-doping. However, ThO2-doping of cobalt oxide was accompanied by an enhancement in the reactivity of CoO towards re-oxidation by O2 to Co3O4 to an extent proportional to the amount of dopant oxide.The X-ray investigation of ZrO2-doped cobalt oxides calcined in air at 1000°C revealed the presence of highly crystalline and stable zirconia in the cubic form. Such a stable phase could not be obtained at temperatures below 2370°C in the absence of stabilizing agents.X-ray and IR investigations of different solids showed the presence of free thoria and zirconia together with new thorium—cobalt and zirconium—cobalt compounds. However, the slow cooling of Zr-treated cobalt oxides from 1000°C to room temperature led to the decomposition of the newly formed compound. The d-spacings and absorption bands of the newly formed compounds were determined.  相似文献   

19.
Nanoporous carbons loaded with both MgO and CaO were prepared by a simple heating of mixtures consisting of poly(ethylene terephthalate) and natural dolomite. Preparations were carried out at temperatures ranging from 850 to 1,000 °C that ensured complete thermal decomposition of the dolomite contained in the mixtures to the oxides. An influence of the PET/dolomite weight ratio and temperature of the preparation process on the porosity of the obtained composite products and on CaO and MgO crystallite sizes are discussed using the results of nitrogen adsorption/desorption at 77 K and X-ray diffraction analyses, respectively. Performances of the hybrid materials as sorbents for carbon dioxide were examined using thermogravimetric analyses. Finally, possibility of regeneration of the spent sorbent materials together with a side—effect accompanying this process are discussed on the basis of thermogravimetric measurements. As found, a part of CO2 captured by the hybrid sorbents gets adsorbed weakly and another portion is fixed strongly. During thermal regeneration, the strongly fixed CO2 reacts with carbon material. In this way small fraction of a sorbent is lost.  相似文献   

20.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2?, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li‐air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open‐air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high‐performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2?. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g?1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号