首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
The reactions of Ln(NO(3))(3) (Ln = La, Er) with 1,4-phenylendiacetic acid (H(2)PDA) under hydrothermal conditions produce isostructural lanthanide coordination polymers with the empirical formula [Ln(2)(PDA)(3)(H(2)O)] x 2H(2)O. The extended structure of [Ln(2)(PDA)(3)(H(2)O)] x 2H(2)O consists of Ln-COO triple helices cross-linked through the [bond]CH(2)C(6)H(4)CH(2)[bond] spacers of the PDA anions, showing 1D open channels along the crystallographic c axis that accommodate the guest and coordinated water molecules. Evacuation of [Er(2)(PDA)(3)(H(2)O)] x 2H(2)O at room temperature and at 200 degrees C, respectively, generates [Er(2)(PDA)(3)(H(2)O)] and [Er(2)(PDA)(3)], both of which give powder X-ray diffraction patterns consistent with that of [Er(2)(PDA)(3)(H(2)O)] x 2H(2)O. The porosity of [Er(2)(PDA)(3)(H(2)O)] and [Er(2)(PDA)(3)] is further demonstrated by their ability to adsorb water vapor to form [Er(2)(PDA)(3)(H(2)O)] x 2H(2)O quantitatively. Thermogravimetric analyses show that [Er(2)(PDA)(3)] remains stable up to 450 degrees C. The effective pore window size in [Er(2)(PDA)(3)] is estimated at 3.4 A. Gas adsorption measurements indicate that [Er(2)(PDA)(3)] adsorbs CO(2) into its pores and shows nonporous behavior toward Ar or N(2). There is a general correlation between the pore size and the kinetic diameters of the adsorbates (CO(2) = 3.3 A, Ar = 3.40 A, and N(2) = 3.64 A). That the adsorption favors CO(2) over Ar is unprecedented and may arise from the combined differentiations on size and on host-guest interactions.  相似文献   

2.
Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.  相似文献   

3.
This paper reports the synthesis, crystal structures, and magnetic properties of a series of lanthanide complexes with nitronyl nitroxide radicals of general formula [[Ln(III)(radical)(4)] x (ClO(4))(3) x (H(2)O)(x) x (THF)(y)] (1-4) and [Ln(III)(radical)(2)(NO(3))(3)] (5, 6) [Ln = La (compounds 1, 3, 5) or Gd (compounds 2, 4, and 6); radical = 2-(2'-benzymidazolyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NITBzImH, compounds 1, 2, 5, 6) or 2-[2'-[(6'-methyl)benzymidazolyl]]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NITMeBzImH, compounds 3, 4)]. (1) C(64)H(88)Cl(3)LaN(16)O(24), fw = 1710.76, orthorhombic, Fddd, a = 11.0682(8) A, b = 34.240(3) A, c = 42.787(3) A, V = 16215(2) A(3), Z = 8, R = 0.0876, R(w) = 0.2336. (2) C(64)H(88)Cl(3)GdN(16)O(24), fw = 1729.10, tetragonal, P 4 macro 2c, a = 16.0682(4) A, b = 16.0682(4) A, c = 18.7190(6) A, V = 4833.0(2) A(3), R = 0.0732, R(w) = 0.2218. (3) C(68)H(94)Cl(3)LaN(16)O(23), fw = 1742.80, tetragonal, P 4 macro 2(1)m, a = 21.125(3) A, b = 21.125(3) A, c = 10.938(2) A, V = 4881.5(14) A(3), R = 0.1017, R(w) = 0.3126. (5) C(28)H(34)LaN(11)O(13), fw = 871.57, orthorhombic, Pna2(1), a = 19.5002(12) A, b = 13.0582(8) A, c = 14.5741(9) A, V = 3711.1(4) A(3), R = 0.0331, R(w) = 0.1146. (6) C(28)H(34)GdN(11)O(13), fw = 889.91, orthorhombic, Pna2(1), a = 19.1831(10) A, b = 13.1600(7) A, c = 14.4107(7) A, V = 3638.0(3) A(3), Z = 4, R = 0.0206, R(w) = 0.0625. Compounds 1-4 consist of [M(III)(radical)(4)](3+) cations, uncoordinated perchlorate anions, THF, and water crystallization molecules. In these complexes, the coordination number around the lanthanide ion is eight, and the polyhedron is either a distorted dodecahedron (1) or a distorted cube (2, 3). The crystal structures of 5 and 6 consist of independent [M(III)(radical)(2)(NO(3))(3)] entities in which the lanthanide is ten-coordinated and has a distorted bicapped square antiprism coordination polyhedron. For the lanthanum(III) complexes, the temperature dependence of the magnetic susceptibility indicates that radical-radical magnetic interactions are negligible either for compounds 1 and 3, while for compound 5 it is simulated considering dimers of weakly antiferromagnetically coupled radicals (J(rad-rad) = -1.1 cm(-1)). In the case of the gadolinium(III) compounds (2, 4, 6), each magnetic behavior gives unambiguous evidence of antiferromagnetic Gd(III)-radical interaction (2, J(Gd-rad) = -1.8 cm(-1); 4, J(Gd-rad) = -3.8 cm(-1); 6, J(Gd-rad1) = -4.05 cm(-1) and J(Gd-rad2) = -0.80 cm(-1)), in contrast to the ferromagnetic case generally observed. The nature of the Gd(III)-radical interaction is explained in relation to the donor strength of the free radical ligand.  相似文献   

4.
Cao Y  Du Z  Li W  Li J  Zhang Y  Xu F  Shen Q 《Inorganic chemistry》2011,50(8):3729-3737
Reaction of Ln(OAr(1))(3)(THF)(2) (Ar(1)= [2,6-((t)Bu)(2)-4-MeC(6)H(2)] with carbodiimides (RNCNR) in toluene afforded the RNCNR coordinated complexes (Ar(1)O)(3)Ln(NCNR) (R = (i)Pr (isopropyl), Ln = Y (1) and Yb (2); R = Cy (cyclohexyl), Ln = Y (3)) in high yields. Treatment of 1 and 2 with 4-chloroaniline, respectively, at a molar ratio of 1:1 yielded the corresponding monoguanidinate complex (Ar(1)O)(2)Y[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (4) and (Ar(1)O)(2)Yb[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (5). Complexes 4 and 5 can be prepared by the reaction of Ln(OAr(1))(3)(THF)(2) with RNCNR and amine in toluene at a 1:1:1 molar ratio in high yield directly. A remarkable influence of the aryloxide ligand on this transformation was observed. The similar transformation using the less bulky yttrium complexes Y(OAr(2))(3)(THF)(2) (Ar(2) = [2,6-((i)Pr)(2)C(6)H(3)]) or Y(OAr(3))(3)(THF)(2) (Ar(3) = [2,6-Me(2)C(6)H(3)]) did not occur. Complexes Ln(OAr(1))(3)(THF)(2) were found to be the novel precatalysts for addition of RNCNR with amines, which represents the first example of catalytic guanylation by the lanthanide complexes with the Ln-O active group. The catalytic activity of Y(OAr(1))(3)(THF)(2) was found to be the same as that of monoguanidinate complex 4, indicating 4 is one of the active intermediates in the present process. The other intermediate, amide complex (Ar(1)O)(2)Ln[(2-OCH(3)-C(6)H(4)NH)(2-OCH(3)-C(6)H(4)NH(2))] (6), was isolated by protonolysis of 4 with 2-OCH(3)-C(6)H(4)NH(2). All the complexes were structurally characterized by X-ray single crystal determination.  相似文献   

5.
The isostructural heterometallic complexes [Ln(III)(2)Mn(III)(2)O(2)(ccnm)(6)(dcnm)(2)(H(2)O)(2)] (Ln = Eu (1Eu), Gd (1Gd), Tb (1Tb), Er (1Er); ccnm = carbamoylcyanonitrosomethanide; dcnm = dicyanonitrosomethanide) have been synthesised and structurally characterised. The in situ transition metal promoted nucleophilic addition of water to dcnm, forming the derivative ligand ccnm, plays an essential role in cluster formation. The central [Ln(III)(2)Mn(III)(2)(O)(2)] moiety has a "butterfly" topology. The coordinated aqua ligands and the NH(2) group of the ccnm ligands facilitate the formation of a range of hydrogen bonds with the lattice solvent and neighbouring clusters. Magnetic measurements generally reveal weak intracluster antiferromagnetic coupling, except for the large J(MnMn) value in 1Gd. There is some evidence for single molecule magnetic (SMM) behaviour in 1Er. Comparisons of the magnetic properties are made with other recently reported butterfly-type {Ln(III)(x)M(III)(4-x) (d-block)} clusters, x = 1, 2; M = Mn, Fe.  相似文献   

6.
A series of organic-inorganic hybrid compounds, K2H7[{Ln(PW11O39)2}{Cu2(bpy)2(mu-ox)}].xH2O (Ln = La, x approximately = 18 (1); Ln = Pr, x approximately = 18(2); Ln = Eu, x approximately = 16(3); Ln = Gd, x approximately 22(4); Ln = Yb, x approximately = 19 (5); bpy = 2,2'-bipyridine and ox = oxalate), have been isolated by the conventional solution method. Single-crystal X-ray diffraction studies reveal that compounds 1-5 are isomorphic and consist of one-dimensional chains, which are constructed by alternating bis(undecatungstophosphate) lanthanates [Ln(PW11O39)2](11-) and dinuclear copper(II)-oxalate complexes [Cu2(bpy)2(mu-ox)]2+.pi-pi interactions of the bpy ligands from adjacent chains lead to their three-dimensional structures. An analogue of potassium K2H9[{K(PW11O39)2}{Cu2(bpy)2(mu-ox)}1].approximately 20.5H2O(6) has also been obtained. The syntheses and structures of these compounds are reported here. Magnetic properties of 1, 2 and 3 are discussed as well. Attempts to crystallize similar compounds containing Co(II) and Ni(II) were unsuccessful.  相似文献   

7.
毛江高  金钟声 《结构化学》1994,13(4):276-280
CrystalStructuresofLn(NO_3)_3(Ln=La,Yb)Complexeswith12-crown-4MaoJiang-Gao;JinZhong-Sheng;YuFeng-Lan(LaboratoryofRareEarthChem...  相似文献   

8.
Gao HL  Yi L  Zhao B  Zhao XQ  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5980-5988
The self-assembly of 4-hydroxypyridine-2,6-dicarboxylic acid (H(3)CAM) and pyridine-2,6-dicarboxylic acid (H2PDA) with Zn(II) salts under hydrothermal conditions gave two novel coordination polymers {[Zn(HCAM)].H2O}n (1) and {[Zn(PDA)(H2O)(1.5)]}n (1a). 1 and 1a comprise of a 2D (4,4) net and a 1D zigzag chain, respectively, in which a new coordination mode of PDA is found. The reactions of H(3)CAM and H2PDA with Nd2O3 in the M/L ratio 2:3 gave {[Nd2(HCAM)3(H2O)4].2H2O}n (2) and {[Nd(2)(PDA)3(H2O)(3)].0.5H2O}n (2a). In 2, a square motif as a building block constructed by four Nd(III) ions was further assembled into a highly ordered 2D (4,4) grid. 2a is a 3D microporous coordination polymer. It is interesting to note that, when Ln(III) salts rather than oxides were employed, the reaction produced {[Ln(CAM)(H2O)3].H2O}n (Ln = Gd, 3; Dy, 4; Er, 5) for H(3)CAM and {[Gd2(PDA)3(H2O)3].H2O}n (3a) for H2PDA. 3-5 are 2D coordination polymers with a 3(3)4(2) uniform net, where hydroxyl groups of H3CAM coordinate with metal ions. The reaction of H3CAM and Er2O3 instead of Er(ClO4)3 produced {[Er2(HCAM)3(H2O)4].2H2O}n (6). The compounds 2a and 3a, 2 and 6 are isomorphous. The stereochemical and supramolecular effects of hydroxyl groups result in the dramatic structural changes from 1D (1a) to 2D (1) and from 2D (2) to 3D (2a). When Ln(III) salts instead of Ln2O3 were employed in the hydrothermal reactions with H(3)CAM, different self-assembly processes gave the products of different metal/ligand ratio with reactants (3-5).  相似文献   

9.
Reaction of H(2)salen (H(2)L) with Tb(OAc)(3).4H(2)O (3 : 2) in MeOH-MeCN under reflux gave homoleptic Tb(4)L(6) (1) in 40% yield; in contrast, similar reactions of Tb(NO(3))(3).6H(2)O and LnCl(3).6H(2)O (Ln = Tb, Nd and Yb) gave [TbL(NO(3))(MeOH)](2)(micro-H(2)L) (2) and [LnL(Cl)(MeOH)](2)(micro-H(2)L) (Ln = Tb (3), Nd (4) and Yb (5); H(2)L = N,N'-ethylenebis(salicylideneimine)).  相似文献   

10.
Two series of novel complexes, [Ln(dca)(2)(Phen)(2)(H(2)O)(3)](dca).(phen) (Ln = Pr (1), Gd (2), and Sm (3), dca = N(CN)(-), phen = 1,10-phenanthroline) and [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n), (Ln = Gd (4), Sm (5), and La (6), 2,2'-bipy = 2,2'-bipydine), have been synthesized and structurally characterized by X-ray crystallography. The crystal structures of the first series (1-3) are isomorphous and consist of discrete [Ln(dca)(2)(Phen)(2)(H(2)O)(3)]+ cations, dca anions, and lattice phen molecules; whereas the structures of the second series (4-6) are characterized by infinite chains [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n). The Ln(III) atoms in all complexes are nine-coordinated and form a distorted tricapped trigonal prism environment. The three-dimensional frameworks of 1-6 are constructed by intermolecular hydrogen bond interactions. Variable-temperature magnetic susceptibility measurements for complexes 1, 2, 4, and 5 indicate a Curie-Weiss paramagnetic behavior over 5-300 K.  相似文献   

11.
The hydrothermal reaction of Ln(2)O(3) (Ln = Dy and Ho), Cu(OAc)(2).2H(2)O, and oxydiacetic acid in the approximate mole ratio of 1:3:8 resulted in the formation of two new members of the isostructural series of polymers formulated as [(Cu(3)Ln(2)(oda)(6)(H(2)O)(6)).12H(2)O](n), crystallizing in the hexagonal crystal system, space group P6/mcc (No. 192). Temperature-dependent magnetic susceptibilities and EPR spectra are reported for the heterometallic compounds Cu-Dy 1, Cu-Ho 2, Cu-Er 3, and Cu-Y 4. The results are discussed in terms of the structure of the compounds, the electronic properties of the lanthanide ions, and the exchange interactions between the magnetic ions.  相似文献   

12.
Li J  Li H  Yan P  Chen P  Hou G  Li G 《Inorganic chemistry》2012,51(9):5050-5057
A new β-diketone, 2-(2,2,2-trifluoroethyl)-1-indone (TFI), which contains a trifluorinated alkyl group and a rigid indone group, has been designed and employed for the synthesis of two series of new TFI lanthanide complexes with a general formula [Ln(TFI)(3)L] [Ln = Eu, L = (H(2)O)(2) (1), bpy (2), and phen (3); Ln = Sm, L = (H(2)O)(2) (4), bpy (5), and phen (6); bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline]. X-ray crystallographic analysis reveals that complexes 1-6 are mononuclear, with the central Ln(3+) ion eight-coordinated by six oxygen atoms furnished by three TFI ligands and two O/N atoms from ancillary ligand(s). The room-temperature photoluminescence (PL) spectra of complexes 1-6 show strong characteristic emissions of the corresponding Eu(3+) and Sm(3+) ions, and the substitution of the solvent molecules by bidentate nitrogen ligands essentially enhances the luminescence quantum yields and lifetimes of the complexes.  相似文献   

13.
Three series of porous lanthanide metal-organic coordination polymers, namely [Cu(bpy)Ln(3)(ip)(5)(Hip)(H(2)O)] [Ln = Er (1a), Y (1b), Eu (1c); bpy = 2,2'-bipyridine, H(2)ip=isophthalic acid], [Cu(3)(bpy)(2)Ln(2)(ip)(6)(H(2)O)(5)] [Ln = Yb (2a), Gd (2b), Tb (2c)], and [Cu(3)Ln(2)(ip)(6)] [Ln = Eu (3a), Gd (3b)] have been synthesized hydrothermally by the reaction of the combination of 3d-4f metal centers and N-/O-donor ligands. X-ray diffraction analyses reveal that polymers 1a-c and 2a-c, as well as 3a, b are isomorphous in structure. Polymers 1a-c consist of 3D alpha-Po networks based on a inorganic rod-shaped secondary building units (SBUs) of {Er(6)Cu(2)(bipy)(2)(O(2)C)(11)} which are 27.03 A in length. Polymers 2a-c also contain 3D alpha-Po networks, constructed from shorter (14.79 A) but similarly rod-shaped SBUs of {Yb(2)Cu(3)(bpy)(2)(O(2)C)(12)}. The structure also contains hydrogen-bonded (H(2)O)(6) chains which can be reversibly dehydrated/rehydrated. Polymers 3a, b contain metal carboxylate substructures which have 2D (6,3) topologies; these layers are bridged by the ip(2-) ligands to give an overall 3D network which contains two sorts of cavities. This series of Ln-Cu coordination polymers are further characterized by antiferromagnetic behavior.  相似文献   

14.
Liang Y  Hong M  Su W  Cao R  Zhang W 《Inorganic chemistry》2001,40(18):4574-4582
The hydrothermal reaction of Ln2O3 (Ln = Er, Gd, and Sm), pyridine-2,5-dicarboxylic acid (H2pydc), and Cu(II) reagents (CuO, Cu(OAc)2-2H2O, or CuCl2-2H2O) with a mole ratio of 1:2:4 resulted in the formation of six polymeric Cu(II)-Ln(III) complexes, [(Ln2Cu3(pydc)6(H2O)12)-4H2O]n (Ln = Er (1); Ln = Gd (2)), [(Ln4Cu2(pydc)8(H2O)12)-4H2O]n (Ln = Sm (3); Ln = Gd (4); Ln = Er (5)), and [(Gd2Cu2(pydc)4(H2O)8)-Cu(pydc)2-12H2O]n (6). 1 and 2 are isomorphous and crystallize in triclinic space group Ponebar. Compounds 3-5 are isomorphous and crystallize in monoclinic space group P2(1)/c. Compound 6 crystallizes in triclinic space group Ponebar. Complexes 1 and 2 have one-dimensional zigzag chain structures and compounds 3-5 display three-dimensional wavelike polymeric structures, while 6 has an infinite sandwich-type structure. The different structures of the complexes are induced by the different forms of Cu(II) reagents; the reactions of Cu(OAc)2-2H2O yield high Cu/Ln ratio products 1, 2, and 6, while the reactions of CuO or CuCl2-2H2O/2,2'-bipyridine results in low Cu/Ln ratio compounds 3-5. Temperature-dependent magnetic susceptibilities for 2, 4, and 5 were studied, and the thermal stabilities of complexes 2 and 4 were examined.  相似文献   

15.
Co-crystallization of K2[Ru(bipy)(CN)4] with lanthanide(III) salts (Ln = Pr, Nd, Gd, Er, Yb) from aqueous solution affords coordination oligomers and networks in which the [Ru(bipy)(CN)4]2- unit is connected to the lanthanide cation via Ru-CN-Ln bridges. The complexes fall into two structural types: [{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}] x xH2O (Ln = Pr, Er, Yb; m = 7, 6, 6, respectively), in which two [Ru(bipy)(CN)4]2- units are connected to a single lanthanide ion by single cyanide bridges to give discrete trinuclear fragments, and [{Ru(bipy)(CN)4}3{Ln(H2O)4}2] x xH2O (Ln = Nd, Gd), which contain two-dimensional sheets of interconnected, cyanide-bridged Ru2Ln2 squares. In the Ru-Gd system, the [Ru(bipy)(CN)4]2- unit shows the characteristic intense (3)metal-to-ligand charge transfer luminescence at 580 nm with tau = 550 ns; with the other lanthanides, the intensity and lifetime of this luminescence are diminished because of a Ru --> Ln photoinduced energy transfer to low-lying emissive states of the lanthanide ions, resulting in sensitized near-infrared luminescence in every case. From the degree of quenching of the Ru-based emission, Ru --> Ln energy-transfer rates can be estimated, which are in the order Yb (k(EnT) approximately 3 x 10(6) sec(-1), the slowest energy transfer) < Er < Pr < Nd (k(EnT) approximately 2 x 10(8) sec(-1), the fastest energy transfer). This order may be rationalized on the basis of the availability of excited f-f levels on the lanthanide ions at energies that overlap with the Ru-based emission spectrum. In every case, the lifetime of the lanthanide-based luminescence is short (tens/hundreds of nanoseconds, instead of the more usual microseconds), even when the water ligands on the lanthanide ions are replaced by D2O to eliminate the quenching effects of OH oscillators; we tentatively ascribe this quenching effect to the cyanide ligands.  相似文献   

16.
Two types of Ln(II)-Co(4) isocarbonyl polymeric arrays, [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3; x = 0, 1) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4), were prepared and structurally characterized. Transmetalation involving Ln(0) and Hg[Co(CO)(4)](2) in Et(2)O yields [(Et(2)O)(3)Ln[Co(4)(CO)(11)]]( infinity ) (1, Ln = Yb; 2, Ln = Eu). Dissolution of the solvent-separated ion pairs [Ln(THF)(x)()][Co(CO)(4)](2) (Ln = Yb, x = 6; Ln = Eu) in Et(2)O affords [(Et(2)O)(2)(THF)Yb[Co(4)(CO)(11)]]( infinity ) (3) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4). In these reactions, oxidation and condensation of the [Co(CO)(4)](-) anions result in formation of the new tetrahedral cluster [Co(4)(CO)(11)](2)(-). The two types of Ln(II)-Co(4) compounds contain different isomers of [Co(4)(CO)(11)](2)(-), and, consequently, the structures of the infinite isocarbonyl networks are distinct. The cluster in [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3) possesses pseudo C(3)(v)() symmetry (an apical Co, three basal Co atoms; one face-bridging, three edge-bridging, seven terminal carbonyls) and connects to Ln(II) centers through eta(2),micro(4)- and eta(2),micro(3)-carbonyls to generate a 2-D puckered sheet. In contrast, [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4) incorporates a C(2)(v)() symmetric cluster (two unique Co environments; two face-bridging, one edge-bridging, eight terminal carbonyls), and isocarbonyl linkages (eta(2),micro(4)-carbonyls) to Eu(II) atoms create a 1-D zigzag chain. Complexes 1-4 contain the first reported eta(2),micro(4)-CO bridges between a Ln and a transition-metal carbonyl cluster. Infrared spectroscopic studies revealed that the isocarbonyl associations to Ln(II) persist in solution. The solution structure and dynamic behavior of the [Co(4)(CO)(11)](2)(-) cluster in 1 was investigated by variable-temperature (59)Co and (13)C NMR spectroscopies.  相似文献   

17.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

18.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

19.
The self-assembly reaction between trivalent lanthanide ions, 2,2':6',2' '-terpyridine (terpy) ligand, and octacyanotungstate(V) leads to the formation of two series of isomorphous cyano-bridged compounds: (i) one-dimensional (1-D) chains [Ln(terpy)(DMF)(4)][W(CN)(8)].6H(2)O.C(2)H(5)OH (Ln = Ce-Dy) and (ii) dinuclear molecules [Ln(terpy)(DMF)(2)(H(2)O)(2)][W(CN)(8)].3H(2)O (Ln = Ho, Er, Yb) and the ionic [Tm(III)(terpy)(DMF)(2)(H(2)O)(3)][WV(CN)(8)].4H(2)O.DMF (DMF = N,N-dimethylformamide) system. The crystal structures of 1-D chains consist of alternating {[W(CN)(8)]} and {[Ln(terpy)]} building blocks. The neighboring chains are weakly linked through the pi-pi stacking interactions of the aromatic rings, leading to two-dimensional supramolecular layers. The dinuclear species are weakly linked through the hydrogen bonds between H2O molecules and terminal cyano ligands resulting in a columnlike arrangement of dimers. Taking into account the ligand-field splitting and the exchange interaction, we have estimated the magnetic couplings between the Ln(III) and WV centers in a series of polycrystalline 1-D chains and in dimeric systems. The corresponding exchange constants have been shown to change the sign along the series of chains. The coupling is antiferromagnetic for 1 (J = -0.24 cm(-1)) and 2 (J = -0.07 cm(-1)), whereas 3 (J = +0.47 cm(-1)), 7 (J = +0.28 cm(-1)), and 8 (J = +0.23 cm(-1)) have ferromagnetic character. In the case of dimeric systems, the coupling constants seem to be independent of the lanthanide center. The splitting structures of the ground-state multiplets of the Ln(III) centers have been shown to explain the temperature dependences of the magnetic susceptibilities.  相似文献   

20.
Studies on Ln[Co(CN)(6)].nH(2)O (Ln = lanthanoid ions; n = 5, 4) by means of thermal analysis, Raman spectroscopy, and X-ray crystallography were carried out, in order to establish the boundary structures in the series. From the thermal analyses, it was confirmed that the complexes include Ln'[Co(CN)(6)].5H(2)O (Ln' = La to Nd) or Ln"[Co(CN)(6)].4H(2)O (Ln = Sm to Lu). Raman spectra of the complexes suggested a different classification. The complexes having five H(2)O molecules displayed two single bands associated with nu(C-N) at around 2170 cm(-1). The complexes having four H(2)O molecules showed two distinct sets of bands of nu(C-N): one was a singlet, and the other was split. Nevertheless, the complex with Nd, which has five H(2)O molecules, exhibited single and split bands. This implies that the symmetry around Nd is lower than that of other complexes having five H(2)O molecules. According to the X-ray crystal analysis, the Pr complex is Pr[Co(CN)(6)].5H(2)O, hexagonal, P6(3)/m, with a = 7.473(1) ?, c = 14.212(1) ?, and Z = 2. On the other hand, the Nd complex is Nd[Co(CN)(6)].5H(2)O, orthorhombic, C222(1), with a = 7.458(4) ?, b = 12.918(3) ?, c = 14.172(2) ?, and Z = 4. Although the Nd complex has five H(2)O molecules, the crystals are orthorhombic and belong to the space group C222(1). Therefore, the structure of Nd[Co(CN)(6)].5H(2)O is regarded as the boundary structure: one of the coordinated water molecules is disordered, although the structure is essentially the same as that of Pr[Co(CN)(6)].5H(2)O. As Pr in Pr[Co(CN)(6)].5H(2)O changes into Nd, the symmetry around the metal atom is lowered and thus the bands associated with nu(CN) in Nd[Co(CN)(6)].5H(2)O and Sm[Co(CN)(6)].4H(2)O outnumber those of Pr[Co(CN)(6)].5H(2)O. The 5H(2)O complex with Nd loses one water molecule by thermal dissociation and changes into the more stable 4H(2)O complex, whose crystals are orthorhombic and belong to the space group Cmcm. Pr[Co(CN)(6)].5H(2)O also changes into the 4H(2)O complex, orthorhombic and Cmcm, when it dehydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号