首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The excess molar volumes, V mE, viscosity deviations, Δη, and excess Gibbs energies of activation, ΔG *E, of viscous flow have been investigated from density and viscosity measurements for two ternary mixtures, 1-butanol + triethylamine + cyclohexane and 1-pentanol + triethylamine + cyclohexane, and corresponding binaries at 303.15 K and atmospheric pressure over the entire range of composition. The empirical equations due to Redlich-Kister, Kohler, Rastogi et al., Jacob-Fitzner, Tsao-Smith, Lark et al., Heric-Brewer, and Singh et al. have been employed to correlate V mE, Δη and ΔG *E of the ternary mixtures with their corresponding binary parameters. The results are discussed in terms of the molecular interactions between the components of the mixture. Further, the Extended Real Associated Solution, ERAS, model has been applied to V mE for the present binary and ternary mixtures, and the results are compared with experimental data.  相似文献   

2.
The excess molar volume (V E), viscosity deviations (Δη) and Gibbs excess energy of activation for viscous flow (G∗E) have been investigated from density (ρ) and viscosity (η) measurements of eight binary mixtures of 1,3-dioxolane with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and i-amyl alcohol over the entire range of mole fractions at 303.15 K. The viscosity data have been correlated with the Grunberg and Nissan equation. Furthermore, excess isentropic compressibilities (KSE) have been calculated from ultrasonic speed measurements of these binary mixtures at 303.15 K. The deviations have been fitted by a Redlich–Kister equation and the results are discussed in terms of molecular interactions and structural effects. The excess properties are found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures. The systems studied exhibit very strong cross association through hydrogen bonding.  相似文献   

3.
The excess molar volume VE, shear viscosity deviation Δη and excess Gibbs energy of activation ΔGE of viscous flow have been investigated by using density (ρ) and shear viscosity (η) measurements for isobutyric acid + water (IBA+W) mixtures over the entire range of mole fractions at five different temperatures, both near and close to the critical temperature (2.055K ≤ (TTc)≤ 13.055K). The results were also fitted with the Redlich–Kister equation. This system exhibited very large negative values of VE and very large positive values of Δη due to increased hydrogen bonding interactions and correlation length between unlike molecules in the critical region and to very large differences between the molar volumes of the pure components at low temperatures. The activation parameters ΔH and ΔS have been also calculated and show that the critical region has an important effect on the volumetric properties.  相似文献   

4.
Densities (ρ), viscosities (η) and speeds of sound (u) of the ternary mixture (1-heptanol + tetrachloroethylene + methylcyclohexane) and the corresponding binary mixtures (1-heptanol + tetrachloroethylene), (1-heptanol + methylcyclohexane) and (tetrachloroethylene + methylcyclohexane) at 298.15 K were measured over the whole composition range. The data obtained are used to calculate the excess molar volumes (V E), excess isobaric thermal expansivities (α E), viscosity deviations (Δη), excess Gibbs energies of activation of viscous flow (ΔG *E) and excess isentropic compressibilities (κ S E) of the binary and ternary mixtures. The data from the binary systems were fitted by the Redlich–Kister equation whereas the best correlation method for the ternary system was found using the Nagata equation. Viscosities, speeds of sound and isentropic compressibilities of the binary and ternary mixtures have been correlated by means of several empirical and semi-empirical equations. The best correlation method for viscosities of binary systems is found using the Iulan et al. equation and for the ternary system using the Heric and McAllister equations. The best correlation method for the speeds of sound and isentropic compressibilities of the binary system (1-heptanol + methylcyclohexane) is found using IMR (Van Deal ideal mixing relation) and for the binary system (tetrachloroethylene + methylcyclohexane) it is found using the NR (Nomoto relation) and for the binary system (1-heptanol + tetrachloroethylene) and the ternary system (1-heptanol + trichloroethylene + methylcyclohexane) it is obtained from the FLT (Jacobson free length theory).  相似文献   

5.
    
Excess molar volumes (V m E ), viscosity deviations (Δlnη) and excess energies of activation for viscous flow (ΔG*E) are reported for non-electrolyte mixtures of 1,2-dimethoxyethane (monoglyme) and dichloromethane, trichloromethane, and tetrachloromethane at 298·15 K and at atmospheric pressure over the whole mole fraction range. The Prigogine-Flory-Patterson (PFP) model has been used to calculateV m E , and the results are compared with experimental data. The Bloomfield and Dewan model has been used to calculate viscosity coefficients, which are compared with experimental data for three mixtures. These results have been analysed in terms of dipole-dipole interactions between 1,2-dimethoxyethane and chloroalkanes. The magnitude of the strength of interaction decreases with the dipole character of the molecule.  相似文献   

6.
Summary. Density (ρ) and viscosity (η) values of the binary mixtures of DMP + 1-pentanol, 1-butanol, and 1-propanol over the entire range of mole fraction at 298.15 and 303.15 K were measured in atmospheric pressure. The excess molar volume (V E), viscosity deviations (Δη), and excess Gibbs energy of activation for viscous flow (G*E) were calculated from the experimental measurements. These results were fitted to Redlich–Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of McAllister. The calculated functions have been used to explain the intermolecular interaction between the mixing components.  相似文献   

7.
Excess molar volumes (V E), viscosities, refractive index, and Gibbs energies were evaluated for binary biodiesel + benzene and toluene mixtures at 298.15 and 303.15 K. The excess molar volumes V E were determined from density, while the excess Gibbs free energy of activation G*E was calculated from viscosity deviation Δη. The excess molar volume (V E), viscosity deviation (Δη), and excess Gibbs energy of activation (G*E) were fitted to the Redlich-Kister polynomial equation to derive binary coefficients and estimate the standard deviations between the experimental data and calculation results. All mixtures showed positive V E values obviously caused by increased physical interactions between biodiesel and the organic solvents.  相似文献   

8.
Densities (ρ)of the binary systems of {difurylmethane + (ethanol or propan-1-ol or butan-1-ol or pentan-1-ol or hexan-1-ol)} have been measured with an Anton Paar DMA 4500 vibrating-tube densimeter over the entire composition range at 298.15,K and atmospheric pressure. Excess molar volumes (V m E ) of each binary system were determined and correlated by the Redlich-Kister equation. Limiting (V i E,∞) and excess partial molar volumes (V i E ) of components of each binary system have been calculated to provide insight into the intermolecular interactions present and the packing efficiencies. The results have been discussed in terms of specific intermolecular interactions, dispersive forces and structural effects.  相似文献   

9.
Densities, ρ, of the binary systems {difurylmethane + (ethanol or propan-1-ol or butan-1-ol or pentan-1-ol or hexan-1-ol)} have been measured with an Anton Paar DMA 4500 vibrating-tube densimeter over the entire composition range at 288.15 and 308.15 K and atmospheric pressure. The measured and literature densities of [difurylmethane + n-alkanol] binary systems have been used to check the validity of the relationship describing the dependence of density on composition. This relation is useful for obtaining interpolated ρ values corresponding to the experimental data. Excess molar volumes (V mE) of each mixture, limiting (V m,i E,∞) and excess partial (V m,i E) molar volumes and the limiting partial molar expansion (E p,i ) of both components of each binary system have been examined to provide insight into the temperature variations of the intermolecular interactions and molecular packing efficiencies. The results have been discussed in terms of specific intermolecular interactions and structural effects.  相似文献   

10.
    
Ultrasonic sound velocities and densities of binary mixtures of 1-bromobutane with propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol and octan-l-ol have been experimentally determined at 303·15 K. Isentropic compressibilities (K s) and deviations in isentropic compressibilities (ΔK S) have been calculated from the results. The values of ΔKS are almost positive over the entire range of composition in all six binary liquid mixtures. The experimental results are explained in terms of depolymerisation of hydrogen-bonded alcohol aggregates, decrease in dipolar association and weak hydrogen-bonding interaction of the type Br---H-O between unlike molecules.  相似文献   

11.
Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with cyclohexane, n-hexane, heptane and octane have been measured over the entire range of composition at (303.15, 308.15 and 313.15) K and at atmospheric pressure. From these experimental values, excess molar volume (V E), deviation in viscosity (Δη) and deviation in isentropic compressibility (ΔK s) have been calculated. The viscosities of binary mixtures were calculated theoretically from the pure component data by using various empirical and semi-empirical relations and the results compared with the experimental findings.  相似文献   

12.
Abstract

Isentropic compressibility data, KS of 1,2-Dibromoethane + Propan-1-ol, + butan-1-ol, + pentan-1-ol, hexan-1-ol, heptan-1-ol and octan-1-ol at 303.15 K are reported. Deviations in isentropic compressibility, KS values are found to be negative for mixtures of 1,2-dibromoethane with propan-1-ol over the entire range of composition and while in butan-1-ol the δKS values are negative at lower molefractions and positive at higher molefractions. Therefore as the chain length increases it is showing the positive deviations. The data are interpreted in terms of specific interactions between the components.  相似文献   

13.
Densities and viscosities of the binary mixtures of m-cresol with 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane and tetrachloroethylene were measured at 303.15, 313.15 and 323.15 K. The measured results are used to compute the excess volumes (VE), deviations in viscosity (Δη) and excess Gibbs energy for activation of flow (ΔGE). The excess volumes, deviations in viscosity, and Gibbs energies for activation of flow are fitted to a polynomial-type equation suggested by Scharlin et al. [J. Chem. Thermodyn. 34, 927 (2002)] and are discussed in general terms.  相似文献   

14.
Excess molar volumes (V m E ) and viscosities (η) of the binary mixtures of 1,2-diethoxyethane with di-, tri- and tetrachloromethane have been measured at 298-15 K and atmospheric pressure over the entire mole fraction range. The deviations in viscosities (δlnη) and excess energies of activation (δG*E) for viscous flow have been calculated from the experimental data. The Prigogine-Flory-Patterson (PFP) model has been used to calculateV m E , and the results have been compared with experimental data. The Bloomfield and Dewan model has been used to calculate viscosity coefficients and these have also been compared with experimental data for the three mixtures. The results have been discussed in terms of dipole-dipole interactions between 1,2-diethoxyethane and chloroalkanes and their magnitudes decreasing with the dipole character of the molecules. A short comparative study with results for mixtures with polyethers and chloroalkanes is also described.  相似文献   

15.
The densities (ρ) and viscosities (η) for the ternary liquid mixtures of water + N,N-dimethylformamide + monoalkanols, have been measured as a function of the composition at 298.15, 308.15, and 318.15 K. From the experimental measurements excess molar volumes (V E), Viscosity deviation (Δη), and synergy index (I s) have been evaluated. The speeds of sound have been also measured and excess isentropic compressibilities (K sE) are calculated al 298.15 K. The results are discussed and interpreted in terms of molecular package and specific interaction predominated by hydrogen bonding, been investigated.  相似文献   

16.
Speeds of sound have been measured in dipropylene glycol monopropyl ether mixtures with methanol, 1-propanol, 1-pentanol, and 1-heptanol as a function of composition at 288.15, 298.15, and 308.15 K and atmospheric pressure. Measurements of viscosity at 298.15 K and atmospheric pressure have also been made for the same mixtures over the whole composition range. The speeds of sound were combined with our previous densitity results to obtain the isentropic compressibility κ S . The molar volumes were multiplied by the isentropic compressibilities to obtain estimates of K S,m and its excess counterparts KS,mEK_{S,m}^{\mathrm{E}}. The KS,mEK_{S,m}^{\mathrm{E}} values are negative over the entire range of composition for all mixtures. Deviations in viscosity η from the mixing relation ∑x i ln η i and excess Gibbs energies of activation for viscous flow ΔG ∗E have been derived for all of these systems. Also, from the speed of sound results, the apparent molar compressibilities [`(K)]f,i0\overline{K}_{\phi ,i}^{0} of the components have been calculated at infinite dilution. The variations of these properties with the composition, temperature and the number of carbon atoms in the alcohol molecule are discussed in terms of molecular interactions. The experimental results have also been discussed on the basis of IR measurements.  相似文献   

17.
Ultrasound velocity (u), density (ρ) and viscosity (η) measurements of benzaldehyde + ethylbenzene mixtures have been carried out at 303.15, 308.15, and 313.15 K. These values have been used to calculate the excess molar volume (V E), deviation in viscosity (δη), and deviation in isentropic compressibility (δβs), deviations in ultrasound velocity (δu), excess free volume (δV f), excess intermolecular free length (δL f) and excess Gibbs free energy of activation of viscous flow (δG E). McAllister’s three body interaction model is used for correlating kinematic viscosity of binary mixtures. The excess values were correlated using the Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. The thermophysical properties under the study were fit to the Jouyban-Acree model. The observed variation of these parameters helps in understanding the nature of interactions in these mixtures. Further, theoretical values of the ultrasound speed were evaluated using theories and empirical relations.  相似文献   

18.

Abstract  

Experimental densities ρ, viscosities η, and refractive indices n D of the ternary mixtures consisting of 2-methyltetrahydrofuran + chlorobenzene + cyclopentanone and constituted binary mixtures were measured at T = 298.15 K for the liquid region and at ambient pressure for the whole composition range. Excess molar volumes V\textm\textEV_{\text{m}}^{\text{E}}, deviations in the viscosity Δη, and deviations in the refractive index Δn D from the mole fraction average for the mixtures were derived from the experimental data. The excess partial molar volumes V\textm,i\textEV_{{\text{m}},i}^{\text{E}} were also calculated. The binary and ternary data of V\textm\textEV_{\text{m}}^{\text{E}}, Δη, and Δn D were correlated as a function of the mole fraction by using the Redlich–Kister and the Cibulka equations, respectively. McAllister’s three-body interaction model is used for correlating the kinematic viscosity of binary mixtures with the mole fraction.  相似文献   

19.
Molar excess volumes, VE, molar excess enthalpies, HE, and speeds of sound data, u, of pyrrolidin-2-one (i) + ethanol or propan-1-ol or propan-2-ol or butan-1-ol (j) binary mixtures have been determined over entire composition range at 308.15 K. The observed speeds of sound data have been utilized to predict excess isentropic compressibilities, of the investigated binary mixtures. The observed excess thermodynamic properties VE, HE and have been analyzed in terms of Graph theory. The analysis of VE data by the Graph theory suggests that pyrrolidin-2-one exists mainly as a mixture of cyclic and open dimer; ethanol as a mixture of dimer and trimer; butan-1-ol and propan-2-ol as mixture of monomer and dimer and propan-1-ol as a dimer in the pure state, and their mixtures contain 1:1 molecular complex. The IR studies lend additional credence to the nature and extent of interactions for the proposed molecular entities in the mixtures. Also, it has been observed that VE, HE and values predicted by the Graph theory compare well to with their corresponding experimental values.  相似文献   

20.
Densities (ρ), speeds of sound (u), and isentropic compressibilities (k S) of binary mixtures of dimethyl sulfoxide (DMSO) with water, methanol, ethanol, 1-propanol, 2-propanol, acetone and cyclohexanone have been measured over the entire composition range at 293.15 and 313.15 K. The excess molar volumes (V E), the deviations in speed of sound (u E) and the deviations in isentropic compressibility (k S E) have been determined. The V E, u E and k S E values were fitted by the Redlich-Kister polynomial equation and the A k coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The results obtained are discussed from the viewpoint of the existence of interactions between the components of the binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号