首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Current Applied Physics》2010,10(4):1108-1111
We have developed red phosphorescent organic light-emitting devices operating at low voltages by using triphenylphosphine oxide (Ph3PO) and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) electron transport layers. 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) and tris-(1-phenylisoquinolinolato-C2,N) iridium(III) [Ir(piq)3] were used as host and guest materials, respectively. Small voltage drops across the electron transport layers and direct injection of holes from 4,4′,4″-tris[N-(2-naphthyl)-N-phenyl-amino]-triphenylamine (2-TNATA) hole transport layer into the Ir(piq)3 guests are responsible for the high current density at low voltage, resulting in a high luminance of 1000 cd/m2 at low voltages of 2.8–3.0 V in devices with a structure of ITO/2-TNATA/CBP:Ir(piq)3/DPVBi/Ph3PO/LiF/Al.  相似文献   

2.
In this paper, we synthesize a triphenylamine-derived cyclometalating ligand of (4-benzothiazol-2-yl-phenyl)-diphenyl-amine (referred as BPDA) and its corresponding Ir(III) complex of (BPDA)2Ir(acac) (acac=acetylacetone). The photophysical property, molecular structure, thermal property and electroluminescence performance of (BPDA)2Ir(acac) are investigated in detail. It is found that (BPDA)2Ir(acac) is an efficient emitter with high thermal stability and short excited state lifetime. The emission of (BPDA)2Ir(acac) changes from deep blue (417 nm) to bluish green (500 nm) upon addition of different solvents. We also investigate its electrophosphorescence performance. A maximum electroluminance of 8820 cd/m2 peaking at 494 nm is achieved, with the highest device efficiency of 1.72 cd/A.  相似文献   

3.
Several iridium-based complexes were investigated as phosphorescent dopants. They achieved about 100% internal quantum efficiency, due to utilization of both singlet and triplet excitons in the radiative processes. We have fabricated phosphorescent OLEDs with 8% Ir(ppz)3 as a triplet emissive dopant in various host materials. CBP, which has an efficiency of 0.20 cd/A, is the best host material. Furthermore, we synthesized metal-organic phosphor complexes based on Ir with different ligands as to (Im)2Ir(acac), (Im-R)2Ir(acac), and Ir(ppz)2(acac).  相似文献   

4.
In order to improve luminescence efficiency, it is necessary to design a phosphorescent material which is capable of transferring the excited energy without triplet–triplet (T–T) annihilation. For this purpose, new types of metal complexes were designed with different species of (C ˆN) ligands. Herein, Ir(ppy)2(piq), Ir(ppy)2(piq-F) and Ir(ppy)2(piq-CF3) were designed and prepared, where ppy, piq, piq-F and piq-CF3 represent 2-phenylpyridine, 1-(phenyl)isoquinoline, 1-(4′-fluorophenyl)isoquinoline and 1-(4′-trifluoromethylphenyl)isoquinoline, respectively. These Ir(III) complexes having two different ligands (hetero-Ir complexes) are expected to have a high luminescence efficiency by intramolecular energy transfer from the energy absorbing ligand to the luminescent ligand leading to a decrease in quenching or energy deactivation. To compare luminescent characteristics of these hetero-Ir complexes, homo-Ir complexes Ir(ppy)3, Ir(piq)3, Ir(piq-F)3 and Ir(piq-CF3)3 were prepared and investigated photophysically.  相似文献   

5.
Transparent conductive WO3/Ag/MoO3 (WAM) multilayer electrodes were fabricated by thermal evaporation and the effects of Ag layer thickness on the optoelectronic and structural properties of multilayer electrode as anode in organic light emitting diodes (OLEDs) were investigated using different analytical methods. For Ag layers with thickness varying between 5 and 20 nm, the best WAM performances, high optical transmittance (81.7%, at around 550 nm), and low electrical sheet resistance (9.75 Ω/cm2) were obtained for 15 nm thickness. Also, the WAM structure with 15 nm of Ag layer thickness has a very smooth surface with an RMS roughness of 0.37 nm, which is suitable for use as transparent conductive anode in OLEDs. The current density?voltage?luminance (J?V?L) characteristics measurement shows that the current density of WAM/PEDOT:PSS/TPD/Alq3/LiF/Al organic diode increases with the increase in thickness of Ag and WO3/Ag (15 nm)/MoO3 device exhibits a higher luminance intensity at lower voltage than ITO/PEDOT:PSS/TPD/Alq3/LiF/Al control device. Furthermore, this device shows the highest power efficiency (0.31 lm/W) and current efficiency (1.2 cd/A) at the current density of 20 mA/cm2, which is improved 58% and 41% compared with those of the ITO-based device, respectively. The lifetime of the WO3/Ag (15 nm)/MoO3 device was measured to be 50 h at an initial luminance of 50 cd/m2, which is five times longer than 10 h for ITO-based device.  相似文献   

6.
《Current Applied Physics》2010,10(4):1103-1107
Highly efficient and stable OLED device in which hole-drift current and electron-drift current are balanced was fabricated. Drift current characteristics according to the thickness of organic layer were examined using the device with ITO/m-MTDATA/NPB/Al structure that can only move the hole and the device with Al/LiF/Alq3/LiF/Al structure that can only move the electron. Using the result of such examination, green device with balanced drift current was produced. Device with the structure of m-MTDATA (80 nm)/NPB (20 nm)/C-545T (3%) doped Alq3 (5 nm)/Alq3 (59 nm)/LiF (1 nm)/Al (200 nm) showed color purity of (0.309, 0.643) and high efficiency of 7.0 lm/W (14.4 cd/A). Most of light emission was observed inside the green emitting layer. Through the result of EL spectrum for the device also including red emitting layer, same result could be obtained. The device with balanced drift current also showed half life-time of 175 h for initial luminance of 3000 cd/m2, which is more stable in comparison to the device without balanced drift current.  相似文献   

7.
制备了一种结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP:TBPe/BAlq:rubrene/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.其中空穴传输型主体NPB掺杂磷光染料Ir(piq)2(acac)作为红色发光层,双载流子传输型主体4,4′-N,N′-dicarbazole-biphenyl (CBP)掺杂TBPe作为蓝色发光层,电子传输型主体材料BAlq掺杂rubrene作为绿色发光层.以上发光层夹于 关键词: 电致发光 磷光染料 异质结 白光  相似文献   

8.
We introduce a series of organic LEDs that exploit the monomer and excimer emissions from single phosphor dopant emitters. These organic LEDs were found to be effective in the simultaneous creation of blue and red emission bands essential for plant growth. By varying the concentration of novel phosphorescent dopants selected from a series of newly synthesized platinum complexes [PtL22–25Cl], we have manufactured the blue-biased LEDs [with the Commission Internationale de L’Eclairage (CIE) coordinates (x, y) (0.27, 0.37)] and the red-biased LEDs [CIE coordinates (0.53, 0.38)], at a high luminance of ≈500 cd/m2 and with external electroluminescence (EL) quantum efficiency of 15–18% photon/electron (→ power efficiency 8–12 lm/W). The EL spectrum most suitable for the action spectrum of photosynthesis yield was that of a device incorporating 20 wt.% content of [PtL23Cl]. This LED yielded photosynthetic photon flux (PPF) approaching 10 μmol s−1 W−1 of the electrical power, a value which significantly exceeds that for the professional lamps used commonly for horticultural lighting.  相似文献   

9.
Flexible organic light-emitting devices (FOLEDs) based on multiple quantum well (MQW) structures, which consist of alternate layers of 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4-TCNQ) and 4,4′,4″-tris-(3-methylphenylphe-nylamino)tripheny-lamine (m-MTDATA) have been fabricated. The Alq3-based device with double quantum well (DQW) structure exhibits the remarkable electroluminescent (EL) performances for the brightness of 23,500 cd/m2 at 14 V and the maximum current efficiency of 7.0 cd/A at 300.3 mA/cm2, respectively, which are greatly improved by 114% and 56% compared with the brightness of 10,958 cd/m2 at 14 V and the maximum current efficiency of 4.5 cd/A at 174.0 mA/cm2 for the conventional device without MQW structures. These results demonstrate that the EL performances of FOLEDs could be greatly improved by utilizing the novel MQW structures, and the reason for this improvement has also been explained by the effect of interfacial dipole and interfacial doping between F4-TCNQ and m-MTDATA in this article.  相似文献   

10.
Improved performance of organic light-emitting diodes (OLEDs) as obtained by a mixed layer was investigated. The OLEDs with a mixed layer which were composed of N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1,1′-biphenyl-4,4′-diamine (NPB), tris-(8-hydroxyquinolato) aluminum (Alq3) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) showed the highest brightness and efficiency, which reached 19048 cd/m2 at 17 V and 4.3 cd/A at 10 mA/cm2, respectively. The turn-on voltage of the device is 2.6 V. Its Commission Internationale del’Eclairage (CIE) coordinate is (0.497, 0.456) at 17 V, and the CIE coordinates of the device are largely insensitive to the driving voltages, which depicts stabilized yellow color.  相似文献   

11.
We demonstrated efficient red organic light-emitting diodes based on a wide band gap material 9,10-bis(2-naphthyl)anthracene (ADN) doped with 4-(dicyano-methylene)-2-t-butyle-6-(1,1,7,7-tetramethyl-julolidyl-9-enyl)-4H-pyran (DCJTB) as a red dopant and 2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10(2-benzothiazolyl)quinolizine-[9,9a,1gh]coumarin (C545T) as an assistant dopant. The typical device structure was glass substrate/ITO/4,4′,4″-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA)/N,N′-bis(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB)/[ADN:Alq3]:DCJTB:C545T/Alq3/LiF/Al. It was found that C545T dopant did not by itself emit but did assist the energy transfer from the host (ADN) to the red emitting dopant via cascade energy transfer mechanism. The OLEDs realized by this approach significantly improved the EL efficiency. We achieved a significant improvement regarding saturated red color when a polar co-host emitter (Alq3) was incorporated in the matrix of [ADN:Alq3]. Since ADN possesses a considerable high electron mobility of 3.1 × 10−4 cm2  V−1 s−1, co-host devices with high concentration of ADN (>70%) exhibited low driving voltage and high current efficiency as compared to the devices without ADN. We obtained a device with a current efficiency of 3.6 cd/A, Commission International d’Eclairage coordinates of [0.618, 0.373] and peak λmax = 620 nm at a current density of 20 mA/cm2. This is a promising way of utilizing wide band gap material as the host to make red OLEDs, which will be useful in improving the electroluminescent performance of devices and simplifying the process of fabricating full color OLEDs.  相似文献   

12.
Highly efficient white organic light-emitting devices (WOLEDs) with a four-layer structure were realized by utilizing phosphorescent blue and yellow emitters. The key concept of device construction is to combine host–guest doping system of the blue emitting layer (EML) and the host-free system of yellow EML. Two kinds of WOLEDs incorporated with distinct host materials, namely N,N'-dicarbazolyl-3,5-benzene (mCP) and p-bis(triphenylsilyly)benzene (UGH2), were fabricated. Without using light out-coupling technology, a maximum current efficiency (ηC) of 58.8 cd/A and a maximum external quantum efficiency (ηEQE) of 18.77% were obtained for the mCP-based WOLED; while a maximum ηC of 65.3 cd/A and a maximum ηEQE of 19.04% were achieved for the UGH2-based WOLED. Meanwhile, both WOLEDs presented higher performance than that of conventionally full-doping WOLEDs. Furthermore, systematic studies of the high-efficiency WOLEDs were progressed.  相似文献   

13.
制备了结构为ITO/NPB/CBP:TBPe:rubrene/BAlq:Ir(piq)2(acac)/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.利用两种不同的主体材料,即用双载流子传输型主体材料CBP掺杂荧光染料TBPe及rubrene作为蓝光和橙黄光发光层;用电子传输型主体材料BAlq掺杂磷光染料Ir(piq)2(acac)作为红色发光层.以上双发光层夹于空穴传输层NPB与具有电子传输性的阻挡层BALq之间.讨论了如何控制 关键词: 有机电致发光 磷光染料 掺杂 白光  相似文献   

14.
A new symmetric starburst orange-red light material, tris(4-(2-(N-butyl-1,8-naphthalimide)ethynyl)phenyl)amine (TNGT), was designed and synthesized. It shows a high fluorescence quantum yield and a slight concentration-quenching effect. A high brightness (6600 cd/m2) and a high current efficiency [4.57 cd/A (at 420 cd/m2)] with CIE (0.59, 0.40) were achieved at a relatively high doping concentration (20 wt%) in a TNGT-based OLED.  相似文献   

15.
A comparative study on top-emitting organic light-emitting diodes (TOLEDs) with normal and inverted structures is briefly investigated. In comparison with the normal TOLED having Ag reflective anode, the inverted device with monolayer Al reflective cathode shows low efficiency as a result of lower reflectance of Al and inferior electron injection. Using Ag/Al bilayer reflective cathode is demonstrated to be a simple and effective method of enhancing efficiency in inverted TOLED. With tris(8-hydroquinoline) aluminum (Alq3) as emitter the luminous efficiency reaches 5.9±0.6 cd/A, which is much higher than those of the corresponding normal TOLED (~5.1 cd/A) and inverted TOLED with monolayer Al reflective cathode (~4 cd/A). The improved performance is attributed to the enhanced reflectance and significant microcavity effect. The electron-injection barrier height of ~0.1 eV from Al to Alq3 via an ultrathin LiF is estimated in the tunneling process for both normal and inverted devices.  相似文献   

16.
以磷光染料Ir(piq)2(acac)作为发光掺杂剂,掺入空穴传输性主体材料NPB中得到红色发光层,荧光材料TBP掺入到主体CBP中作为蓝色发光层,制备了结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP/CBP:TBPe/BCP/ALq/Mg:Ag的双发光层白色有机电致发光器件.其中ALq3、未掺杂的NPB和CBP及BCP层分别作为电子传输层、空穴传输层和激子阻挡层.实验中通过调节发光层厚度及Ir(piq)2关键词: 磷光 激子阻挡层 有机电致发光  相似文献   

17.
A new solution-processable tetraalkoxy-substituted poly(1,4-phenylenevinylene) derivative, poly{[2-(3′,7′-dimethyloctyloxy)-3,5,6-trimethoxy]-1,4-phenylenevinylene} (TALK-PPV), was synthesized through a dehydrohalogenation polymerization route, and its light-emitting properties were investigated. The TALK-PPV showed highly blue-shifted UV–visible absorption and PL emission spectra compared to the dialkoxy-substituted PPV derivatives. This is because of the disturbance to the π-conjugation caused by a steric hindered structure. The TALK-PPV thin film exhibited an absorption peak at 446 nm, with an onset at 515 nm. Its PL emission maximum was at 554 nm. Cyclic voltammetric analysis showed the HOMO and LUMO energy levels of the TALK-PPV to be 5.77 and 3.36 eV, respectively. Light-emitting devices were fabricated with an ITO (indium-tin oxide)/PEDOT/polymer/Ca/Al configuration. The TALK-PPV component leads to pure green light emission with a CIE 1931 chromaticity of (0.20, 0.74) at 100 cd/m2 brightness, which is very close to the standard green (0.21, 0.71) demanded by the NTSC (National Television System Committee). The maximum brightness of this device was 24,900 cd/m2 with an efficiency of 1.45 cd/A.  相似文献   

18.
In this paper, we synthesize two 1,10-phenanline derived ligands, along with their corresponding Eu(III) complexes. Their crystal structures, photophysical characteristics, including UV–vis absorption, photoluminescence (PL), quantum yields, excited state lifetimes, and thermal stability, are discussed in detail. In addition, we also investigate their potential application in electroluminescence (EL) devices. Experimental data suggest that the two Eu(III) complexes are promising emitters for EL application: pure red emissions with a maximum EL brightness of 850 cd/m2 and a maximum current efficiency of 3.67 cd/A are achieved. It is found that the elimination of active hydrogen in ligand favors most PL and EL factors, including PL quantum efficiency, thermal stability, and current efficiency, but not for maximum EL brightness. An emitter with shorter excited state lifetime leads to a higher EL brightness, regardless of its relatively lower device efficiency.  相似文献   

19.
Organic electrophosphorescent devices have been intensively investigated for using in full-color flat-panel display. Since the quantum efficiency of electrophosphorescent device decreases rapidly as the luminance increases, it is desirable to operate the electrophosphorescent display with active matrix rather than passive matrix. Here we report the study of driving electrophosphorescent diode with all-organic TFT. We obtained the maximum power luminance that was obtained about 90 cd/m2. Turn-on voltage is approximately 10 V. Field effect mobility, threshold voltage, and on–off current ratio in 0.5-μm thick gate dielectric layer were 0.13 cm2/V s, −7 V, and 106 A/A. The structure of electrophosphorescent diode is ITO/TPD/BCP:Ir(ppy)3/BCP/Alq3/Li:Al/Al. In organic TFT, photoacryl is used as an insulator and pentacene as an active layer.  相似文献   

20.
In our present study hydrogenated amorphous silicon (a-Si:H) thin films and solar cells have been prepared in a conventional single chamber rf-PECVD unit from silane–argon mixture by varying radio frequency (rf) power densities from 6 mW/cm2 to 50 mW/cm2. By optimizing the properties of the intrinsic material we have chosen a material which is deposited at 6 mW/cm2 rf power density, 0.2 Torr pressure, 175 oC substrate temperature and by 97% argon dilution. For this material minority carriers (holes) diffusion length (Ld) measured in the as deposited state is 180 nm and it degrades by 15% after light soaking. This high Ld value indicates that the material is of device quality. We have fabricated a single junction solar cell having the structure p-a-SiC:H/i-a-Si:H/n-a-Si:H without optimizing the doped layers. This set exhibits a mean open circuit voltage of 0.8 V and conversion efficiency of 7.7%. After light soaking conversion efficiency decreases by 15% which demonstrates that it is possible to deposit device grade material and solar cells from silane–argon mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号