首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Radon anomalies in groundwater were recorded prior to three major earthquakes – (1) 2003 Mw = 6.8 Chengkung, (2) 2006 Mw = 6.1 Taitung, and (3) 2008 Mw = 5.4 Antung. The epicenters were located 24 km, 52 km, and 13 km, respectively, from the Antung radon-monitoring station. Prior to the three major earthquakes, radon decreased from background levels of 29.3 ± 1.7, 28.2 ± 2.1, and 27.2 ± 1.8 Bq dm?3 to minima of 12.1 ± 0.3, 13.7 ± 0.3, and 17.8 ± 1.6 Bq dm?3, respectively. Based on the radon precursory data, this paper correlates the observed radon minima with earthquake magnitude and precursory time. The correlations provide a possible means for forecasting local disastrous earthquakes in the southern segment of coastal range and longitudinal valley of eastern Taiwan.  相似文献   

2.
Radon volatilization mechanism into the gas phase was hypothesized to explain the anomalous declines in groundwater radon precursory to three major earthquakes – (1) 2003 MW = 6.8 Chengkung, (2) 2006 MW = 6.1 Taitung, and (3) 2008 MW = 5.4 Antung in Taiwan. The epicenters were located 24 km, 52 km, and 13 km from the Antung radon-monitoring well D1, respectively. To verify the mechanism of in situ volatilization, we monitored groundwater-dissolved ethane in addition to radon and methane at well D1 in the Antung hot spring since November 30, 2010. The mechanism of in situ radon volatilization has been corroborated by the simultaneous concentration declines in groundwater-dissolved radon, methane, and ethane precursory to the 2011 MW 5.0 Chimei earthquake. The epicenter was located 32 km from the Antung radon-monitoring well D1. Observations at the Antung hot spring also suggest that radon is the best-choice tracer among the groundwater-dissolved gases for strain changes in the crust preceding an earthquake. On the southern segment of the Chihshang fault, the observed radon minima decrease as the earthquake magnitude increases.  相似文献   

3.
《Solid State Ionics》2006,177(19-25):1929-1932
A2−αA′αMO4 (A = Pr, Sm, A′ = Sr, M = Ni, Mn) with K2NiF4-type structure were synthesized by solid reaction. Their chemical stability, electrical conductivity and thermal expansion behavior as well as cathodic polarization were investigated in relation to the cathode of SOFC. The results showed that A2−αA′αMO4 exhibited a low reactivity with yttria stabilized zirconia (YSZ) electrolyte. The thermal expansion coefficient (TEC) values were changed with the ionic radius of A. The specific conductivities of the nickelates were higher than those of manganites. While the nickelates showed a lower cathodic polarization in comparison with manganites.  相似文献   

4.
The spectra of the Ba 6pnk autoionizing Stark states with |M| = 0, 1, converging to the 6p1/2+ and 6p3/2+ ionization thresholds, are measured as a function of the electric field strength F. Several 6pjnk Stark manifolds with n = 13–15 have been systematically studied in order to explore their characteristics of configuration interaction. Experimental results are analyzed by fitting them to the Lorentzian profile, from which the positions and widths are determined. Different spectroscopic properties between the Ba 6p1/2nk and 6p3/2nk autoionizing Stark states are investigated. Comparison between the Ba 6pjnk autoionizing Stark states with |M| = 0 and those with |M| = 1 are made.  相似文献   

5.
《Solid State Ionics》2006,177(3-4):269-274
Alkaline earth substituted UO2 (U1  xMxO2 ± δ; M = Mg, Ca, Sr; 0.1  x  0.525) with fluorite structure was synthesized in reducing atmosphere. Structure and conductivity properties of U1  xMxO2 ± δ fluorites were investigated for possible application in solid oxide fuel cells (SOFC). At room temperature and ambient atmosphere the materials are stable; however they decompose at an oxygen partial pressure pO2 > 10 4 atm and temperatures higher than 600 °C. The total conductivity measured for the best conducting U1  xMxO2 ± δ material with M = Ca and x = 0.177 is as high as 3 S/cm at pO2 < 10 4 atm at 600 °C. The relatively low ionic transference number (ti∼0.02) is disadvantageous for potential use as electrolyte material for SOFC applications. The high conductivity and possible depolarization effects suggest potential use as anode materials in SOFC.  相似文献   

6.
《Solid State Ionics》2006,177(7-8):691-695
Single crystals of the lithium-rich lithium manganese oxide spinels Li1 + xMn2  xO4 with x = 0.10 and 0.14 have been successfully synthesized in high-temperature molten chlorides at 1023 K. The single-crystal X-ray diffraction study confirmed the cubic Fd3¯m space group and the lattice parameters of a = 8.2401(9) Å for x = 0.10 and a = 8.2273(10) Å for x = 0.14 at 300 K, respectively. The crystal structures have been refined to the conventional values R = 3.7% for x = 0.10 and R = 3.1% for x = 0.14, respectively. Low-temperature single-crystal X-ray diffraction experiments revealed that these single crystal samples showed no phase transition between 100 and 300 K. The electron-density distribution images in these compounds by the single-crystal MEM analysis clearly showed strong covalent bonding features between the Mn and O atoms due to the Mn–3d and O–2p interaction.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):1879-1881
The double ordered perovskites NdBaCo2O5 and NdBaCo2O6 were prepared by soft chemistry. The samples were characterized from a structural and chemical point of view, concomitantly with their physical properties. Upon reduction, NdBaCo2O5 is formed with a tetragonal unit cell (a = b = 3.94 Å, c = 7.57 Å) and presents an antiferromagnetic behavior. Upon oxidation, a complete stoichiometric ordered phase NdBaCo2O6 with a tetragonal unit cell (a = b = 3.88 Å, c = 7.63 Å) could be obtained with a ferromagnetic and a metallic behavior. Finally it is shown that these phases are able to reversibly catch and release oxygen, suggesting a high anionic conductivity.  相似文献   

8.
《Solid State Ionics》2006,177(19-25):1837-1841
The cobalt-doped lanthanum–nickel oxide system, La4Ni(3−x)CoxO10±δ (0.0  x  3.0, Δx = 0.2), was investigated as possible cathode materials for intermediate-temperature solid-oxide fuel cells. X-ray diffraction shows the presence of two structural phases in the series belonging to Bmab for 0.0  x  0.2, 0.8  x  2.0 and 2.6  x  3.0 and Fmmm for 0.4  x  0.6 and 2.2  x  2.4. All compositions are oxygen-deficient (δ < 0). Electrical conductivity measurements show a systematic decrease in the conductivity as cobalt content increases from x = 0.0 to 2.0, and reverses for x > 2.0. AC impedance measurements of the x = 0.4 composition in symmetrical cells with LSGM as an electrolyte show improved electrode performance over the parent nickelate La4Ni3O9.78. Long-term thermal stability studies show the x = 0.4 composition to be more stable than the x = 3.0 phase after annealing at 1173 K in air for 1 week making this material a viable candidate for cathodes in solid oxide fuel cells.  相似文献   

9.
《Solid State Ionics》2006,177(1-2):73-76
Ionic conduction in fluorite-type structure oxide ceramics Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) at temperature 400–800 °C was systematically studied under wet hydrogen/dry nitrogen atmosphere. On the sintered complex oxides as solid electrolyte, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid states proton conducting cell reactor by electrochemical methods, which directly evidenced the protonic conduction in those oxides at intermediate temperature. The rate of evolution of ammonia in Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) is up to 7.2 × 10 9, 7.5 × 10 9, 7.7 × 10 9, 8.2 × 10 9 mol s 1 cm 2, respectively.  相似文献   

10.
《Solid State Ionics》2006,177(9-10):907-913
The electrode reaction of the perovskite phases Sr1−xLaxCo0.8Fe0.2O3−δ (x = 0.1 and 0.6) on Ce0.9Gd0.1O1.95 has been investigated by impedance spectroscopy in the temperature range 600  T  800 °C. Thick porous electrodes (t 20 μm) were sprayed on Ce0.9Gd0.1O1.95 and ac impedance spectra were recorded on symmetrical cells at the equilibrium. The analysis of the complex impedance diagrams clearly indicates the presence of two contributions. The low frequency one was assigned to the gas phase oxygen diffusion through the porous electrode and a finite length diffusion (Warburg) impedance was used to describe the high frequency (HF) data. The polarization resistance of the HF impedance contribution (Rw) is higher for x = 0.1 while the activation energy of Rw is higher for x = 0.6. The variations of Rw versus the La content, temperature and thickness indicate that the Warburg-type impedance contains information of both bulk oxygen diffusion and surface processes.  相似文献   

11.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

12.
《Solid State Ionics》2006,177(1-2):121-127
Lithium cobalt vanadate LixCoVO4 (x = 0.8; 1.0; 1.2) has been prepared by a solid state reaction method. The XRD analysis confirms the formation of the sample. A new peak has been observed for Li1.0CoVO4 and for Li1.2CoVO4 indicating the formation of a new phase. The XPS analysis indicates the reduction in the oxidation of vanadium and oxygen with the addition of Li in LixCoVO4 (x = 0.8, 1.0, 1.2). The impedance analysis gives the conductivity value as 2.46 × 10 5, 6.16 × 10 5, 9 × 10 5 Ω 1 cm 1 for LixCoVO4 (x = 0.8; 1.0; 1.2), all at 623 K. The similarity in the bulk activation energy (Ea) and the activation enthalpy for migration of ions (Eω) indicate that the conduction in Li1.2CoVO4 has been due to hopping mechanism.  相似文献   

13.
《Solid State Ionics》2006,177(5-6):457-470
Atomistic modelling showed that a key factor affecting the p(O2) dependencies of point defect chemical potentials in perovskite-type La0.3Sr0.7Fe1−xMxO3−δ (M = Ga, Al; x = 0–0.4) under oxidizing conditions, relates to the coulombic repulsion between oxygen vacancies and/or electron holes. The configurations of A- and B-site cations with stable oxidation states have no essential influence on energetics of the mobile charge carriers, whereas the electrons formed due to iron disproportionation are expected to form defect pair clusters with oxygen vacancies. These results were used to develop thermodynamic models, adequately describing the p(O2)-T-δ diagrams of La0.3Sr0.7Fe(M′)O3−δ determined by the coulometric titration technique at 923–1223 K in the oxygen partial pressure range from 1 × 10 5 to 0.5 atm. The thermodynamic functions governing the oxygen intercalation process were found independent of the defect concentration. Doping with aluminum and gallium leads to increasing oxygen deficiency and induces substantial changes in the behavior of iron cations, increasing the tendencies to disproportionation and hole localization. Despite similar oxygen nonstoichiometry in the Al- and Ga-substituted ferrites at a given dopant content, the latter tendency is more pronounced in the case of aluminum-containing perovskites.  相似文献   

14.
The crystal structure and physical properties of BaFe2As2, BaCo2As2, and BaNi2As2 single crystals are surveyed. BaFe2As2 gives a magnetic and structural transition at TN = 132(1) K, BaCo2As2 is a paramagnetic metal, while BaNi2As2 has a structural phase transition at T0 = 131 K, followed by superconductivity below Tc = 0.69 K. The bulk superconductivity in Co-doped BaFe2As2 below Tc = 22 K is demonstrated by resistivity, magnetic susceptibility, and specific heat data. In contrast to the cuprates, the Fe-based system appears to tolerate considerable disorder in the transition metal layers. First principles calculations for BaFe1.84Co0.16As2 indicate the inter-band scattering due to Co is weak.  相似文献   

15.
《Solid State Ionics》2006,177(13-14):1163-1171
Oxygen non-stoichiometry and electrical conductivity of the Pr2−xSrxNiOδ series with x = 0.0–0.5 were investigated in Ar/O2 (pO2 = 2.5 to 21 000 Pa) within a temperature range of 20–1000 °C. The equilibrium values of oxygen non-stoichiometry and electrical conductivity of these nickelates were determined as functions of temperature and oxygen partial pressure (pO2). The nickelates with x = 0–0.5 appear to be p-type semiconductors in the investigated temperature and pO2 ranges. The nickelates with x = 0.3–0.5 show very feebly marked pO2 dependencies of the conductivity. Pr1.7Sr0.3NiOδ shows the anomalies of the conductivity versus oxygen partial pressure which can be related to the orthorhombic–tetragonal crystal structure transformations. The conductivity of the Pr2−xSrxNiOδ samples correlates with the average oxidation state of the nickel cations. The samples with x = 0.5 have the highest nickel oxidation state (≈ 2.5+), the highest [Ni3+]/[Ni2+] ratio close to 1 and show the highest conductivity (≈ 120 S/cm) in the whole pO2 and temperature ranges investigated.  相似文献   

16.
《Solid State Ionics》2006,177(26-32):2625-2628
New olivines LiMAsO4 (M = Mn, Fe, Co, and Ni) have been tested as positive electrode in lithium cells. Under the used experimental conditions we did not succeed to remove lithium ions from LiFeAsO4, LiMnAsO4 or LiNiAsO4. More work is needed in order to verify whether the lack of electrochemical activity is intrinsic to these materials, or it is due to kinetical limitations such as particle size and poor conductivity. On the contrary lithium ions could be reversibly deinserted/inserted from/into LiCoAsO4 at average voltages of 4.8 and 4.6 V respectively; the delithiated compound maintaining the olivine structural framework.The high pressure polymorph of LiMAsO4 (M = Fe, Co, Ni) crystallizing with the spinel structure did not show any electrochemical activity potentially useful in rechargeable lithium batteries.  相似文献   

17.
Density functional theory is used to study oxygen adsorption and its effect on surface segregation in (2 1 1) surfaces of Pt(shell)/M(core) and Pt3M (M = Co, Ir) alloys. It is found that the most energetically favorable oxygen adsorption site is the bridge site over and parallel to the (1 0 0) step. Surface segregation phenomena is observed in Pt3Co, Pt3Ir and Pt/Co(core) systems. The Pt/Ir(core) structure was the only one, among the studied systems, that showed antisegregation behavior even in presence of oxygen adsorbed.  相似文献   

18.
《Journal of Molecular Liquids》2006,123(2-3):139-145
(p, ρ, T) and (ps, ρs, Ts) properties, and apparent molar volumes Vϕ of LiI (aq) at T = 298.15 to 398.15 K, at pressures up to p = 60 MPa were reported, and apparent molar volumes at infinite dilution Vϕ0 have been evaluated. An empirical correlation for density of lithium iodide (aq) with pressure, temperature and molality was derived. The experiments were carried out at molalities m = 0.11053, 0.32532, 0.70013, 1.40459, 2.95059, and 4.88147 mol kg 1 of lithium iodide.  相似文献   

19.
《Solid State Ionics》2006,177(19-25):1725-1728
Apatite-type La10  xSi6  yAlyO27  3x/2  y/2 (x = 0–0.33; y = 0.5–1.5) exhibit predominant oxygen ionic conductivity in a wide range of oxygen partial pressures. The conductivity of silicates containing 26.50–26.75 oxygen atoms per formula unit is comparable to that of gadolinia-doped ceria at 770–870 K. The average thermal expansion coefficients are (8.7–10.8) × 10 6 K 1 at 373–1273 K. At temperatures above 1100 K, silicon oxide volatilization from the surface layers of apatite ceramics and a moderate degradation of the ionic transport with time are observed under reducing conditions, thus limiting the operation temperature of Si-containing solid electrolytes.  相似文献   

20.
《Solid State Ionics》2006,177(13-14):1205-1210
A comparative investigation of the much-studied La2NiO4+δ (n = 1) phase and the higher-order Ruddlesden-Popper phases, Lan+1NinO3n+1 (n = 2 and 3), has been undertaken to determine their suitability as cathodes for intermediate-temperature solid-oxide fuel cells. As n is increased, a structural phase transition is observed from tetragonal I4/mmm in the hyperstoichiometric La2NiO4.15 (n = 1) to orthorhombic Fmmm in the oxygen-deficient phases, La3Ni2O6.95 (n = 2) and La4Ni3O9.78 (n = 3). High temperature d.c. electrical conductivity measurements reveal a dramatic increase in overall values from n = 1, 2 to 3 with metallic behavior observed for La4Ni3O9.78. Impedance spectroscopy measurements on symmetrical cells with La0.9Sr0.10Ga0.80Mg0.20O3−δ (LSGM-9182) as the electrolyte show a systematic improvement in the electrode performance from La2NiO4.15 to La4Ni3O9.78 with ∼ 1 Ω cm2 observed at 1073 K for the latter. Long-term thermal stability tests show no impurity formation when La3Ni2O6.95 and La4Ni3O9.78 are heated at 1123 K for 2 weeks in air, in contrast to previously reported data for La2NiO4.15. The relative thermal expansion coefficients of La3Ni2O6.95 and La4Ni3O9.78 were found to be similar at ∼ 13.2 × 10 6 K 1 from 348 K to 1173 K in air compared to 13.8 × 10 6 K 1 for La2NiO4.15. Taken together, these observations suggest favourable use for the n = 2 and 3 phases as cathodes in intermediate-temperature solid-oxide fuel cells when compared to the much-studied La2NiO4+δ (n = 1) phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号