首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An example of a direct axial interaction of a platinum(II) atom with a Mo(2) core through a uniquely designed tridentate ligand 6-(diphenylphosphino)-2-pyridonate (abbreviated as pyphos) is described. Treatment of PtX(2)(pyphosH)(2) (2a, X = Cl; 2b, X = Br; 2c, X = I) with a 1:1 mixture of Mo(2)(O(2)CCH(3))(4) and [Mo(2)(O(2)CCH(3))(2)(NCCH(3))(6)](2+) (3a) in dichloromethane afforded the linear trinuclear complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCH(3))(2)](2) (4a, X = Cl; 4b, X = Br; 4c, X = I). The reaction of [Mo(2)(O(2)CCMe(3))(2)(NCCH(3))(4)](2+) (3b) with 2a-c in dichloromethane afforded the corresponding pivalato complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCMe(3))(2)](2) (5a, X = Cl; 5b, X = Br; 5c, X = I), whose bonding nature is discussed on the basis of the data from Raman and electronic spectra as well as cyclic voltammograms. The linear trinuclear structures in 4b and 5a-c were confirmed by NMR studies and X-ray analyses: 4b, monoclinic, space group C2/c, a = 34.733(4) ?, b = 17.81(1) ?, c = 22.530(5) ?, beta = 124.444(8) degrees, V = 11498(5) ?(3), Z = 8, R = 0.060 for 8659 reflections with I > 3sigma(I) and 588 parameters; 5a, triclinic, space group P&onemacr;, a = 13.541(3) ?, b = 17.029(3) ?, c = 12.896(3) ?, alpha = 101.20(2) degrees, beta = 117.00(1) degrees, gamma = 85.47(2) degrees, V = 2599(1) ?(3), Z = 2, R = 0.050 for 8148 reflections with I > 3sigma(I) and 604 parameters; 5b, triclinic, space group P&onemacr;, a = 12.211(2) ?, b = 20.859(3) ?, c = 10.478(2) ?, alpha = 98.88(1) degrees, beta = 112.55(2) degrees, gamma = 84.56(1) degrees, V = 2433.3(8) ?(3), Z = 2, R = 0.042 for 8935 reflections with I > 3sigma(I) and 560 parameters; 5c, monoclinic, space group P2(1)/n, a = 13.359(4) ?, b = 19.686(3) ?, c = 20.392(4) ?, beta = 107.92(2) degrees, V = 5101(2) ?(3), Z = 4, R = 0.039 for 8432 reflections with I > 3sigma(I) and 560 parameters.  相似文献   

2.
Lube MS  Wells RL  White PS 《Inorganic chemistry》1996,35(17):5007-5014
The 1:1 mole ratio reactions of boron trihalides (BX(3)) with tris(trimethylsilyl)phosphine [P(SiMe(3))(3)] produced 1:1 Lewis acid/base adducts [X(3)B.P(SiMe(3))(3), X = Cl (1), Br (2), I (5)]. Analogous 1:1 mole ratio reactions of these boron trihalides with lithium bis(trimethylsilyl)phosphide [LiP(SiMe(3))(2)] produced dimeric boron-phosphorus ring compounds {[X(2)BP(SiMe(3))(2)](2), X = Br (3), Cl (4)}. X-ray crystallographic studies were successfully conducted on compounds 1-4. Compound 1 crystallized in the orthorhombic space group Pbca, with a = 13.420(3) ?, b = 17.044(5) ?, c = 21.731(7) ?, V = 4970.6(25) ?(3), and D(calc) = 1.229 g cm(-3) for Z = 8; the B-P bond length was 2.022(9) ?, Compound 2 crystallized in the orthorhombic space group Pbca, with a = 13.581(6) ?, b = 17.106(7) ?, c = 22.021(9) ?, V = 5116(4) ?(3), and D(calc) = 1.540 g cm(-3) for Z = 8; the B-P bond length was 2.00(2) ?. Compound 3 crystallized in the monoclinic space group P2(1)/n, with a = 9.063(5) ?, b = 16.391(8) ?, c = 9.331(4) ?, V = 1379.2(12) ?(3), and D(calc) = 1.676 g cm(-3) for Z = 2; the B-P bond length was 2.023(10) ?. Compound 4 crystallized in the monoclinic space group P2(1)/n, with a = 9.143(5) ?, b = 16.021(8) ?, c = 9.170(4) ?, V = 1342.2(11) ?(3), and D(calc) = 1.282 g cm(-3) for Z = 2; the B-P bond length was 2.025(3) ?. Thermal decomposition studies were performed on compounds 1-4, yielding colored powders with boron:phosphorus ratios greater than 1:1 and significant C and H contamination indicated by elemental analyses.  相似文献   

3.
Reactions of MnX2.nH2O with tris(N-(D-mannosyl)-2-aminoethyl)amine ((D-Man)3-tren), which was formed from D-mannose and tris(2-aminoethyl)amine (tren) in situ, afforded colorless crystals of [Mn((D-Man)3-tren)]X2 (3a, X = Cl; 3b, X = Br; 3c, X = NO3; 3d, X = 1/2SO4). The similar reaction of MnSO4.5H2O with tris(N-(L-rhamnosyl)-2-aminoethyl)amine ((L-Rha)3-tren) gave [Mn((L-Rha)3-tren)]SO4 (4d), where L-rhamnose is 6-deoxy-L-mannose. The structures of 3b and 4d were determined by X-ray crystallography to have a seven-coordinate Mn(II) center ligated by the N-glycoside ligand, (aldose)3-tren, with a C3 helical structure. Three D-mannosyl residues of 3b are arranged in a delta(ob3) configuration around the metal, leading to formation of a cage-type sugar domain in which a water molecule is trapped. In 4d, three L-rhamnosyl moieties are in a delta(lel3) configuration to form a facially opened sugar domain on which a sulfate anion is capping through hydrogen bonding. These structures demonstrated that a configurational switch around the seven-coordinate manganese(II) center occurs depending on its counteranion. Reactions of 3a, 3b, and 4d with 0.5 equiv of Mn(II) salt in the presence of triethylamine yielded reddish orange crystals formulated as [[Mn((aldose)3-tren)]2Mn(H2O)X3.nH2O (5a, aldose = D-Man, X = Cl; 5b, aldose = D-Man, X = Br; 6d, aldose = L-Rha, X = 1/2SO4). The analogous trinuclear complexes 6a (aldose = L-Rha, X = Cl), 6b (aldose = L-Rha, X = Br), and 6c (aldose = L-Rha, X = NO3) were prepared by the one-pot reaction of Mn(II) salts with (L-Rha)3-tren without isolation of the intermediate Mn(II) complexes. X-ray crystallographic studies revealed that 5a, 5b, 6c, and 6d have a linearly ordered trimanganese core, Mn(II)Mn(III)Mn(II), bridged by two carbohydrate residues with Mn-Mn separations of 3.845(2)-3.919(4) A and Mn-Mn-Mn angles of 170.7(1)-173.81(7) degrees. The terminal Mn(II) atoms are seven-coordinate with a distorted mono-face-capped octahedral geometry ligated by the (aldose)3-tren ligand through three oxygen atoms of C-2 hydroxyl groups, three N-glycosidic nitrogen atoms, and a tertiary amino group. The central Mn(III) atoms are five-coordinate ligated by four oxygen atoms of carbohydrate residues in the (aldose)3-tren ligands and one water molecule, resulting in a square-pyramidal geometry. In the bridging part, a beta-aldopyranosyl unit with a chair conformation bridges the two Mn(II)Mn(III) ions with the C-2 mu-alkoxo group and with the C-1 N-glycosidic amino and the C-3 alkoxo groups coordinating to each metal center. These structures could be very useful information in relation to xylose isomerases which promote aldose-ketose isomerization by using divalent dimetal centers such as Mn2+, Mg2+, and Co2+.  相似文献   

4.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

5.
Atwood D  Jegier J 《Inorganic chemistry》1996,35(15):4277-4282
This work was conducted as part of a broad-based effort to determine the factors that affect cation formation for organometallic aluminum complexes. In this study the adduct species R(2)AlX.NH(2)(t)Bu (R, X: Me, F (1); Me, Cl (2); Et, Cl (3); Me, Br (4)) and cationic complexes [R(2)Al(NH(2)(t)Bu)(2)]X (R, X: Me, Br (5); Et, Br (6); Me, I (7)) were examined. These complexes demonstrate that the reaction of R(2)AlX with excess NH(2)(t)Bu produces cationic complexes only when X = Br or I. All of the compounds were characterized by melting points, (1)H NMR, IR, elemental analyses, and, in some cases, X-ray crystallography. X-ray data: 2, triclinic, P&onemacr;, a = 6.277(3) ?, b = 8.990(3) ?, c = 10.393(3) ?, alpha = 71.97(1) degrees, beta = 80.25(3) degrees, gamma = 81.97(3) degrees, V = 547.0(4) ?(3), Z = 2, 1032 reflections with F > 4.0 sigma(F), R = 0.0520; 5, monoclinic, P2(1)/c, a = 9.099(1) ?, b = 10.292(1) ?, c = 17.255(2) ?, beta = 104.81(1) degrees, V = 1562.1(3) ?(3), Z = 4, 1464 reflections with F > 4.0 sigmaF, R = 0.0387; 6, monoclinic, P2(1)/c, a = 14.122(2) ?, b = 13.539(2) ?, c = 21.089(2) ?, beta = 107.73(1) degrees, V = 3841.2(9) ?(3), Z = 4, 781 reflections with F > 5.0 sigmaF, R = 0.0873; 7, monoclinic, P2(1)/n, a = 9.071(1) ?, b = 10.529(1) ?, c = 17.714(2) ?, beta = 103.67(1) degrees, V = 1644.0(3) ?(3), Z = 4, 1723 reflections with F > 4.0 sigmaF, R = 0.0451.  相似文献   

6.
The reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] (1) with RX (R = Me, Et, n-Pr; X = I) in MeCN form the monoalkylated antimony complexes [Et(4)N](2)[RSb{Fe(CO)(4)}(3)] (R = Me, 2; R = Et, 4; R = n-Pr, 6) and the dialkylated antimony clusters [Et(4)N][R(2)Sb{Fe(CO)(4)}(2)] (R = Me, 3; R = Et, 5; R = n-Pr, 7), respectively. When [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] reacts with i-PrI, only the monoalkylated antimony complex [Et(4)N](2)[i-PrSb{Fe(CO)(4)}(3)] (8) is obtained. The mixed dialkylantimony complex [Et(4)N][MeEtSb{Fe(CO)(4)}(2)] (9) also can be synthesized from the reaction of 2 with EtI. While the reaction with Br(CH(2))(2)Br produces [Et(4)N](2)[BrSb{Fe(CO)(4)}(3)] (10), treatment with Cl(CH(2))(3)Br forms the monoalkylated product [Et(4)N](2)[Cl(CH(2))(3)Sb{Fe(CO)(4)}(3)] (11) and a dialkylated novel antimony-iron complex [Et(4)N][{&mgr;-(CH(2))(3)}Sb{Fe(CO)(4)}(3)] (12). On the other hand, the reaction with Br(CH(2))(4)Br forms the monoalkylated antimony product and the dialkylated antimony complex [Et(4)N][{&mgr;-(CH(2))(4)}Sb{Fe(CO)(4)}(2)] (13). Complexes 2-13 are characterized by spectroscopic methods or/and X-ray analyses. On the basis of these analyses, the core of the monoalkyl clusters consists of a central antimony atom tetrahedrally bonded to one alkyl group and three Fe(CO)(4) fragments and the dialkyl products are structurally similar to the monoalkyl clusters, with the central antimony bonded to two alkyl groups and two Fe(CO)(4) moieties in each case. The dialkyl complex 3 crystallizes in the monoclinic space group P2(1)/c with a = 13.014(8) ?, b = 11.527(8) ?, c = 17.085(5) ?, beta = 105.04(3) degrees, V = 2475(2) ?(3), and Z = 4. Crystals of 12 are orthorhombic, of space group Pbca, with a = 14.791(4) ?, b = 15.555(4) ?, c = 27.118(8) ?, V = 6239(3) ?(3), and Z = 8. The anion of cluster 12 exhibits a central antimony atom bonded to three Fe(CO)(4) fragments with a -(CH(2))(3)- group bridging between the Sb atom and one Fe(CO)(4) fragment. This paper discusses the details of the reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] with a series of alkyl halides and dihalides. These reactions basically proceed via a novel double-alkylation pathway, and this facile methodology can as well provide a convenient route to a series of alkylated antimony-iron carbonyl clusters.  相似文献   

7.
The syntheses of the water-soluble, chelating phosphines 1,2-bis(bis(hydroxybutyl)phosphino)ethane (1, n = 3; DHBuPE) and 1,2-bis(bis(hydroxypentyl)phosphino)ethane (1, n = 4; DHPePE) are reported. These ligands (and, in general, other 1,2-bis(bis(hydroxyalkyl)phosphino)ethane ligands) can be used to impart water solubility to metal complexes. As examples of this, the [Ni(DHPrPE)(2)Cl]Cl (2), [Rh(DHPrPE)(2)][Cl] (3), and [Ru(DHBuPE)(2)Cl(2)][Cl] (4) complexes were synthesized; they are indeed soluble in water (>0.5 M). Crystals of DHPrPE (1, n = 2) are monoclinic, space group P2(1)/c, with a = 9.5935(8) ?, b = 9.353(2) ?, c = 10.655(2) ?, alpha = 90 degrees, beta = 100.03(1) degrees, gamma = 90, V = 941.5(5) ?(3), R = 0.051, and Z = 2. Crystals of [Ni(DHPrPE)(2)Cl]Cl (2) are monoclinic, space group I2, with a = 15.951(3) ?, b = 11.454(2) ?, c = 20.843(3) ?, alpha = 90 degrees, beta = 91.24(2) degrees, gamma = 90 degrees, V = 3807(2) ?(3), R = 0.062, and Z = 4. Crystals of [Rh(DHPrPE)(2)][Cl] (3) are triclinic, space group P&onemacr;, with a = 13.900(2) ?, b = 15.378(2) ?, c = 18.058(2) ?, alpha = 87.71(1) degrees, beta = 75.03(1) degrees, gamma = 85.24(1), V = 3715(2) ?(3), R = 0.044, and Z = 4. Crystals of [Ru(DHBuPE)(2)Cl(2)][Cl] (4) are monoclinic, space group C2/c, with a = 14.310(2) ?, b = 21.630(2) ?, c = 15.459(3) ?, alpha = 90 degrees, beta = 99.83(1) degrees, gamma = 90, V = 4715(1) ?(3), R = 0.056, and Z = 4.  相似文献   

8.
A redox model study of [NiFe] hydrogenase has examined a series of five polymetallics based on the metalation of the dithiolate complex [1,5-bis(mercaptoethyl)-1,5-diazacyclooctane]Ni(II), Ni-1. Crystal structures of three polymetallics of the series have been reported earlier: [(Ni-1)(2)()Ni]Cl(2)(), [(Ni-1)(2)()FeCl(2)()](2)(), and [(Ni-1)(3)()(ZnCl)(2)()]Cl(2)(). Two are described here: [(Ni-1)(2)()Pd]Cl(2)().2H(2)()Ocrystallizes in the monoclinic system, space group P2(1)/c with cell constants a = 12.212(4) ?, b = 7.642(2) ?, c = 16.625(3) ?, beta = 107.69(2) degrees, V = 1443.230(0) ?(3), Z = 2, R = 0.051, and R(w) = 0.056. [(Ni-1)(2)()CoCl]PF(6)() crystallizes in the triclinic system, space group P&onemacr;, with cell constants a = 8.14(2) ?, b = 13.85(2) ?, c = 15.67(2) ?, alpha = 113.59(10) degrees, beta = 101.84(14) degrees, gamma = 94.0(2) degrees, V = 1561.620(0)?(3), Z = 2, R = 0.072, and R(w) = 0.077. In all Ni-1 serves as a bidentate metallothiolate ligand with a "hinge" angle in the range 105-118 degrees and Ni-M distances of 2.7- 3.7 ?. The most accessible redox event is shown by EPR and electrochemistry to reside in the N(2)S(2)Ni unit and is the Ni(II/I) couple. Charge neutralization of the thiolate sulfurs by metalation can (dependent on the interacting metal) stabilize the Ni(I) state as efficiently as methylation forming a thioether. The implication of these results for the heterometallic active site of [NiFe]-hydrogenase as structured from Desulfovibrio gigas (Volbeda, A., et al. Nature, 1995, 373, 580), the generality of the Ni(&mgr;-SR)(2)M hinge structure, and a possible explanation for the unusual redox potentials are discussed.  相似文献   

9.
Wu W  Fanwick PE  Walton RA 《Inorganic chemistry》1996,35(19):5484-5491
The reactions of the unsymmetrical, coordinatively unsaturated dirhenium(II) complexes [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)]Y (XylNC = 2,6-dimethylphenyl isocyanide; Y = O(3)SCF(3) (3a), PF(6) (3b)) with XylNC afford at least three isomeric forms of the complex cation [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+). Two forms have very similar bis(&mgr;-halo)-bridged edge-sharing bioctahedral structures of the type [(CO)BrRe(&mgr;-Br)(2)(&mgr;-dppm)(2)Re(CNXyl)(2)]Y (Y = O(3)SCF(3) (4a/4a'), PF(6) (4b/4b')), while the third is an open bioctahedron [(XylNC)(2)BrRe(&mgr;-dppm)(2)ReBr(2)(CO)]Y (Y = O(3)SCF(3) (5a), PF(6) (5b)). While the analogous chloro complex cation [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+) was previously shown to exist in three isomeric forms, only one of these has been found to be structurally similar to the bromo complexes (i.e. the isomer analogous to 5a and 5b). The reaction of 3a with CO gives the salt [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3) (7), in which the edge-sharing bioctahedral cation [(XylNC)BrRe(&mgr;-Br)(&mgr;-CO)(&mgr;-dppm)(2)ReBr(CO)](+) has an all-cis arrangement of pi-acceptor ligands. The Re-Re distances in the structures of 4b', 5a, and 7 are 3.0456(8), 2.3792(7), and 2.5853(13) ?, respectively, and accord with formal Re-Re bond orders of 1, 3, and 2, respectively. Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](PF(6))(0.78)(ReO(4))(0.22).CH(2)Cl(2) (4b') at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 19.845(4) ?, b = 16.945(5) ?, c = 21.759(3) ?, beta = 105.856(13) degrees, V = 7038(5) ?(3), and Z = 4. The structure was refined to R = 0.060 (R(w) = 0.145) for 14 245 data (F(o)(2) > 2sigma(F(o)(2))). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)]O(3)SCF(3).C(6)H(6) (5a) at 173 K: monoclinic space group P2(1)/n (No. 14) with a = 14.785(3) ?, b = 15.289(4) ?, c = 32.067(5) ?, beta = 100.87(2) degrees, V=7118(5) ?(3), and Z = 4. The structure was refined to R = 0.046 (R(w) = 0.055) for 6962 data (I > 3.0sigma(I)). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3).Me(2)CHC(O)Me (7) at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 14.951(2) ?, b = 12.4180(19) ?, c = 40.600(5) ?, beta = 89.993(11) degrees, V = 7537(3) ?(3), and Z = 4. The structure was refined to R = 0.074 (R(w) = 0.088) for 6595 data (I > 3.0sigma(I)).  相似文献   

10.
The excited state properties of a series of singly bonded dirhodium compounds, consisting of Rh(0)(2), Rh(0)Rh(II)X(2), and Rh(II)(2)X(4) (X = Cl and Br) cores coordinated by three bis(difluorophosphino)methylamine ligands, have been investigated. The newly synthesized complexes with X = Br have been structurally characterized. The mixed-valence complex Rh(2)[&mgr;-CH(3)N(PF(2))(2)](3)Br(2)[(PF(2))CH(3)N(PF(2))] crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 13.868(7) ?, b = 16.090(5) ?, c = 11.614(5) ?, V = 1591(3) ?(3), and Z = 4; the structure was refined to values of R = 0.052 and R(w) = 0.062. Orange crystals of Rh(2)[&mgr;-CH(3)N(PF(2))(2)](3)Br(4) are monoclinic with a C2/c space group: a = 14.62(6) ?, b = 12.20(2) ?, c = 14.33(1) ?; beta = 106.0(2) degrees; V = 2457(11) ?(3); Z = 4; and R = 0.058 and R(w) = 0.056. Crystalline solids and low-temperature glasses of each member of the chloride and bromide series exhibit long-lived red luminescence. Excitation profiles and temperature dependencies of the emission bandwidths and lifetimes for all complexes are characteristic of luminescence originating from a dsigma excited state. Efficient nonradiative decay is observed upon the thermal population of an excited state proximate to the lowest energy emissive excited state of these complexes. The nonradiative decay rate constant of the upper excited state is 10(2)-10(3) and 10(3)-10(4) greater than that of the emissive excited state for complexes with X = Cl and Br, respectively.  相似文献   

11.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

12.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

13.
Chen L  Cotton FA 《Inorganic chemistry》1996,35(25):7364-7369
Reaction of [Zr(6)Cl(18)H(5)](3)(-) (1) with 1 equiv of TiCl(4) yields a new cluster anion, [Zr(6)Cl(18)H(5)](2)(-) (2), which can be converted back into [Zr(6)Cl(18)H(5)](3)(-) (1) upon addition of 1 equiv of Na/Hg. Cluster 2 is paramagnetic and unstable in the presence of donor molecules. It undergoes a disproportionation reaction to form 1, some Zr(IV) compounds, and H(2). It also reacts with TiCl(4) to form [Zr(2)Cl(9)](-) (4) and a tetranuclear mixed-metal species, [Zr(2)Ti(2)Cl(16)](2)(-) (3). The oxidation reaction of 1 with TiCl(4) is unique. Oxidation of 1 with H(+) in CH(2)Cl(2) solution results in the formation of [ZrCl(6)](2)(-) (5) and H(2), while in py solution the oxidation product is [ZrCl(5)(py)](-) (6). There is no reaction between 1 and TiI(4), ZrCl(4), [TiCl(6)](2)(-), [ZrCl(6)](2)(-), or CrCl(3). Compounds [Ph(4)P](2)[Zr(6)Cl(18)H(5)] (2a), [Ph(4)P](2)[Zr(2)Ti(2)Cl(16)] (3a), [Ph(4)P](2)[Zr(2)Cl(9)] (4a), [Ph(4)P](2)[ZrCl(6)].4MeCN (5a.4MeCN), and [Ph(4)P][ZrCl(5)(py)] (6a) were characterized by X-ray crystallography. Compound 2a crystallized in the trigonal space group R&thremacr; with cell dimensions (20 degrees C) of a = 28.546(3) ?, b = 28.546(3) ?, c = 27.679(2) ?, V = 19533(3) ?(3), and Z = 12. Compound 3a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 11.375(3) ?, b = 13.357(3) ?, c = 11.336(3) ?, alpha = 106.07(1) degrees, beta = 114.77(1) degrees, gamma = 88.50(1) degrees, V = 1494.8(7) ?(3), and Z = 1. Compound 4a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 12.380(5) ?, b = 12.883(5) ?, c = 11.000(4) ?, alpha = 110.39(7) degrees, beta = 98.29(7) degrees, gamma = 73.12(4) degrees, V = 1572(1) ?(3), and Z = 2. Compound 5a.4MeCN crystallized in the monoclinic space group P2(1)/c with cell dimensions (-60 degrees C) of a = 9.595(1) ?, b = 19.566(3) ?, c = 15.049(1) ?, beta = 98.50(1) degrees, V = 2794.2(6) ?(3), and Z = 2. Compound 6a crystallized in the monoclinic space group P2(1)/c with cell dimensions (20 degrees C) of a = 10.3390(7) ?, b = 16.491(2) ?, c = 17.654(2) ?, beta = 91.542(6) degrees, V = 3026.4(5) ?(3), and Z = 4.  相似文献   

14.
A series of mercury(II) ionic liquids, [C(n)mim][HgX(3)], where [C(n)mim] = n-alkyl-3-methylimidazolium with n = 3, 4 and X = Cl, Br, have been synthesized following two different synthetic approaches, and structurally characterized by means of single-crystal X-ray structure analysis ([C(3)mim][HgCl(3)] (1), Cc (No. 9), Z = 4, a = 16.831(4) ?, b = 10.7496(15) ?, c = 7.4661(14) ?, β = 105.97(2)°, V = 1298.7(4) ?(3) at 298 K; [C(4)mim][HgCl(3)] (2), Cc (No. 9), Z = 4, a = 17.3178(28) ?, b = 10.7410(15) ?, c = 7.4706(14) ?, β = 105.590(13)°, V = 1338.5(4) ?(3) at 170 K; [C(3)mim][HgBr(3)] (3), P2(1)/c (No. 14), Z = 4, a = 10.2041(10) ?, b = 10.7332(13) ?, c = 14.5796(16) ?, β = 122.47(2)°, V = 1347.2(3) ?(3) at 170 K; [C(4)mim][HgBr(3)] (4), Cc (No. 9), Z = 4, a = 17.093(3) ?, b = 11.0498(14) ?, c = 7.8656(12) ?, β = 106.953(13)°, V = 1421.1(4) ?(3) at 170 K). Compounds 1, 2, and 4 are isostructural and are characterized by strongly elongated trigonal [HgX(5)] bipyramids, which are connected via common edges in chains. In contrast, 3 contains [Hg(2)Br(6)] units formed by two edge-sharing tetrahedra. With melting points of 69.3 °C (1), 93.9 °C (2), 39.5 °C (3), and 58.3 °C (4), all compounds qualify as ionic liquids. 1, 2, and 4 solidify upon fast cooling as glasses, whereas 3 crystallizes. Cyclic voltammetry shows two separate, quasi-reversible redox processes, which can be associated with the 2Hg(2+)/Hg(2)(2+) and Hg(2)(2+)/2Hg redox couples.  相似文献   

15.
Chivers T  Gao X  Parvez M 《Inorganic chemistry》1996,35(15):4336-4341
The reaction of (t)BuNHLi with TeCl(4) in toluene at -78 degrees C produces (t)BuNTe(&mgr;-N(t)Bu)(2)TeN(t)Bu (1) (55%) or [((t)BuNH)Te(&mgr;-N(t)Bu)(2)TeN(t)Bu]Cl (2) (65%) for 4:1 or 7:2 molar ratios, respectively. The complex {Te(2)(N(t)Bu)(4)[LiTe(N(t)Bu)(2)(NH(t)Bu)]LiCl}(2) (5) is obtained as a minor product (23%) from the 4:1 reaction. It is a centrosymmetric dimer in which each half consists of the tellurium diimide dimer 1 bonded through an exocyclic nitrogen atom to a molecule of LiTe(N(t)Bu)(2)(NH(t)Bu) which, in turn, is linked to a LiCl molecule. Crystals of 5 are monoclinic, of space group C2/c, with a = 27.680(6) ?, b = 23.662(3) ?, c = 12.989(2) ?, beta = 96.32(2) degrees, V = 8455(2) ?(3), and Z = 4. The final R and R(w) values were 0.046 and 0.047. At 65 degrees C in toluene solution, 5 dissociates into 1, LiCl, and {[LiTe(N(t)Bu)(2)(NH(t)Bu)](2)LiCl}(2) (4), which may also be prepared by treatment of [Li(2)Te(N(t)Bu)(3)](2) (6) with 2 equiv of HCl gas. The centrosymmetric structure of 6 consists of a distorted hexagonal prism involving two pyramidal Te(N(t)Bu)(3)(2)(-) anions linked by four Li atoms to give a Te(2)N(6)Li(4) cluster. Crystals of 6 are monoclinic, of space group P2(1)/c, with a = 10.194(2) ?, b = 17.135(3) ?, c = 10.482(2) ?, beta = 109.21(1) degrees, V = 1729.0(5) ?(3), and Z = 2. The final R and R(w) values were 0.026 and 0.023. VT (1)H and (7)Li NMR studies reveal that, unlike 1, compounds 2, 4, and 6 are fluxional molecules. Possible mechanisms for these fluxional processes are discussed.  相似文献   

16.
The stabilization of unsupported Ti-M (M = Fe, Ru, Co) heterodinuclear complexes has been achieved by use of amidotitanium building blocks containing tripodal amido ligands. Salt metathesis of H(3)CC(CH(2)NSiMe(3))(3)TiX (1) and C(6)H(5)C(CH(2)NSiMe(3))(3)TiX (2) as well as HC{SiMe(2)N(4-CH(3)C(6)H(4))}(3)TiX (3) (X = Cl, a; Br, b) with K[M(CO)(2)Cp] (M = Fe, Ru) and Na[Co(CO)(3)(PR(3))] (R = Ph, Tol) gave the corresponding stable heterobimetallic complexes of which H(3)CC(CH(2)NSiMe(3))(3)Ti-M(CO)(2)Cp (M = Fe, 6; Ru, 7) and HC{SiMe(2)N(4-CH(3)C(6)H(4))}(3)Ti-M(CO)(2)Cp (M = Fe, 12; Ru, 13) have been characterized by X-ray crystallography. 6: monoclinic, P2(1)/n, a = 15.496(3) ?, b = 12.983(3) ?, c = 29.219(3) ?, beta = 104.52(2) degrees, Z = 8, V = 5690.71 ?(3), R = 0.070. 7: monoclinic, P2(1)/c, a = 12.977(3) ?, b = 12.084(3) ?, c = 18.217(3) ?, beta = 91.33(2) degrees, Z = 4, V = 2855.91 ?(3), R = 0.048. 12: monoclinic, I2/c, a = 24.660(4) ?, b = 15.452(3) ?, c = 20.631(4) ?, beta = 103.64(3) degrees, Z = 8, V = 7639.65 ?(3), R = 0.079. 13: monoclinic, I2/c, a = 24.473(3) ?, b = 15.417(3) ?, c = 20.783(4) ?, beta = 104.20(2) degrees, Z = 8, V = 7601.84 ?(3), R = 0.066. (1)H- and (13)C-NMR studies in solution indicate free internal rotation of the molecular fragments around the Ti-M bonds. Fenske-Hall calculations performed on the idealized system HC(CH(2)NH)(3)Ti-Fe(CO)(2)Cp (6x) have revealed a significant degree of pi-donor-acceptor interaction between the two metal fragments reinforcing the Ti-Fe sigma-bond. Due to the availability of energetically low-lying pi-acceptor orbitals at the Ti center this partial multiple bonding is more pronounced that in the tin analogue HC(CH(2)NH)(3)Sn-Fe(CO)(2)Cp (15x) in which an N-Sn sigma-orbital may act as pi-acceptor orbital.  相似文献   

17.
Several new organogold(III) derivatives of the type [AuX(2)(damp)] (damp = o-C(6)H(4)CH(2)NMe(2)) have been prepared [X = CN, SCN, dtc, or X(2) = tm; dtc = R(2)NCS(2) (R = Me (dmtc) or Et (detc)); tm = SCH(CO(2))CH(2)CO(2)Na] together with [AuCl(tpca)(damp)]Cl (tpca = o-Ph(2)PC(6)H(4)CO(2)H), [Au(dtc)(damp)]Y (Y = Cl, BPh(4)) and K[Au(CN)(3)(damp)]. The (13)C NMR spectra of these and previous derivatives have been fully assigned. In [Au(dtc)(2)(damp)] and K[Au(CN)(3)(damp)], the damp ligand is coordinated only through carbon, as shown by X-ray crystallography and/or NMR. [Au(detc)(2)(damp)] has space group C2/c, with a = 29.884(4) ?, b = 13.446(2) ?, c = 12.401(2) ?, beta = 99.45(3)(o), V = 4915 ?(3), Z = 8, and R = 0.057 for 1918 reflections. The damp and one detc ligand are monodentate, the other detc is bidentate; in solution, the complex shows dynamic behavior, with the detc ligands appearing equivalent. The crystal structure of [Au(dmtc)(damp)]BPh(4) [Pna2(1), a = 26.149(5) ?, b = 11.250(2) ?, c = 11.921(2) ?, V = 3507 ?(3), Z = 4, R = 0.073, 1772 reflections] shows both ligands to be bidentate in the cation, but the two Au-S distances are nonequivalent. The crystal structure of [Au(tm)(damp)] has also been determined [P2(1)/n, a = 18.267(7) ?, b = 9.618(3) ?, c = 18.938(4) ?, beta = 113.45(3)(o), V = 3053 ?(3), Z = 8, R = 0.079, 1389 reflections]. The tm is bound through sulfur and the carboxyl group which allows five-membered ring formation. In all three structures, the trans-influence of the sigma-bonded aryl group is apparent. [AuCl(2)(damp)] has been tested in vitroagainst a range of microbial strains and several human tumor lines, where it displays differential cytotoxicity similar to that of cisplatin. Against the ZR-75-1 human tumor xenograft, both [AuCl(2)(damp)] and cisplatin showed limited activity.  相似文献   

18.
Syntheses and isolations of the tris(amino)stibine and tris(amino)bismuthine E[N(H)(C(6)H(2)(t)Bu(3))](3) (E = Sb, Bi) from ECl(3) and LiN(H)(C(6)H(2)(t)Bu(3)) are described, together with spectroscopic and structural characterization [crystal data for C(54)H(90)N(3)Sb, M = 903.04, space group P&onemacr;, a = 11.491(5) ?, b = 24.652(7) ?, c = 10.002(5) ?, alpha = 98.38(3) degrees, beta = 96.44(5) degrees, gamma = 77.25(3) degrees, V = 2724(2) ?(3), D(c) = 1.101 Mg/m(3), Z = 2, R = 0.0547; crystal data for C(54)H(90)BiN(3), M = 990.27, space group P&onemacr;, a = 11.511(5) ?, b = 24.785(15) ?, c = 9.981(5) ?, alpha = 98.06(5) degrees, beta = 96.50(4) degrees, gamma = 77.40(5) degrees, V = 2742(2) ?(3), D(c) = 1.200 Mg/m(3), Z = 2, R = 0.0619]. The compounds bear the "bulky" 2,4,6-tri-tert-butylphenyl substituent (known as supermesityl or Mes), and their formation is considered in the context of the same reactions for PCl(3) and AsCl(3), which have been previously shown to produce the aminoiminopnictine structures [N(H)(C(6)H(2)(t)Bu(3))]P=N(C(6)H(2)(t)Bu(3)) and [N(H)(C(6)H(2)(t)Bu(3))]As=N(C(6)H(2)(t)Bu(3)). The observations establish the limits of the steric control by the supermesityl substituent and provide qualitative support for the thermodynamic significance of substituent steric strain.  相似文献   

19.
Three methods have been developed to prepare gallium and indium complexes of three tetradentate N(2)S(2) ligands of the general formula M(N(2)S(2))R (M = Ga, In; R = Cl, Br, SCN, O(2)CC(6)H(5)-O,O'). The ancillary ligand (Cl, SCN, O(2)CC(6)H(5)-O,O') was varied with the tetradentate ligand BAT-TM. X-ray crystallography shows that the coordination geometry about the d(10) metal ion is influenced by the steric requirements of the ligands. X-ray crystallography of four molecules results in the following data: GaCl(BAT-TM) (1), formula = C(10)H(22)ClGaN(2)S(2), space group = Pnma, a = 12.387(4) ?, b = 21.116(6) ?, c = 5.986(2) ?, V = 1565.8(9) ?(3), Z = 4; InCl(BAT-TM) (2), formula = C(10)H(22)ClInN(2)S(2), space group = Pnma, a = 12.968(9) ?, b = 29.29(1) ?, c = 5.866(2) ?, V = 1620(2) ?(3), Z = 4; InNCS(BAT-TM) (3), formula = C(11)H(24)ClInN(3)S(3), space group = Pbca, a = 11.812(3) ?, b = 11.679(3) ?, c = 24.238(9) ?, V = 3449.7 (17) ?(3), Z = 8; In(O,O'-O(2)CC(6)H(5))(BAT-TM) (4), formula = C(19)H(29)O(2)InN(2)S(2), space group = P2(1)/n, a = 10.783(2) ?, b = 18.708(4) ?, c = 12.335(4) ?, V = 2321.7(9) ?(3), Z = 4. Proton NMR studies show that the complexes are stable in solution; in polar solvents such as acetonitrile, for certain molecules, two metal-ligand complexes are observed. Similarly, two metal-ligand complexes are seen in NMR data taken in 80% acetonitrile/20% D(2)O (pD = 4.6) mixture. HPLC studies (acetonitrile/50 mM sodium acetate, pH = 4.6) show that the lipophilicity of the ligand determines the retention time of the complex.  相似文献   

20.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号