首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

2.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif.  相似文献   

3.
The transition metal, alkali metal, and main group uranyl selenites, Ag(2)(UO(2))(SeO(3))(2) (1), K[(UO(2))(HSeO(3))(SeO(3))] (2), Rb[(UO(2))(HSeO(3))(SeO(3))] (3), Cs[(UO(2))(HSeO(3))(SeO(3))] (4), Tl[(UO(2))(HSeO(3))(SeO(3))] (5), and Pb(UO(2))(SeO(3))(2) (6), have been prepared from the hydrothermal reactions of AgNO(3), KCl, RbCl, CsCl, TlCl, or Pb(NO(3))(2) with UO(3) and SeO(2) at 180 degrees C for 3 d. The structures of 1-5 contain similar [(UO(2))(SeO(3))(2)](2-) sheets constructed from pentagonal bipyramidal UO(7) units that are joined by bridging SeO(3)(2-) anions. In 1, the selenite oxo ligands that are not utilized within the layers coordinate the Ag(+) cations to create a three-dimensional network structure. In 2-5, half of the selenite ligands are monoprotonated to yield a layer composition of [(UO(2))(HSeO(3))(SeO(3))](1-), and coordination of the K(+), Rb(+), Cs(+), and Tl(+) cations occurs through long ionic contacts. The structure of 6 contains a uranyl selenite layered substructure that differs substantially from those in 1-5 because the selenite anions adopt both bridging and chelating binding modes to the uranyl centers. Furthermore, the Pb(2+) cations form strong covalent bonds with these anions creating a three-dimensional framework. These cations occur as distorted square pyramidal PbO(5) units with stereochemically active lone pairs of electrons. These polyhedra align along the c-axis to create a polar structure. Second-harmonic generation (SHG) measurements revealed a response of 5x alpha-quartz for 6. The diffuse reflectance spectrum of 6 shows optical transitions at 330 and 440 nm. The trailing off of the 440 nm transition to longer wavelengths is responsible for the orange coloration of 6.  相似文献   

4.
Four new quaternary molybdenum selenites, namely, HRb(3)(Mo(5)O(15))(SeO(3))(2)(H(2)O)(2)1, α-Rb(4)Mo(5)O(15)(SeO(3))(2)(H(2)O)(2)2, β-Rb(4)Mo(5)O(15)(SeO(3))(2)(H(2)O)(2)3 and K(4)Mo(5)O(15)(SeO(3))(2)(H(2)O)(2)4 were synthesized by hydrothermal reactions. All of the four compounds feature a zero-dimensional (0D) [(Mo(5)O(15))(SeO(3))(2)](4-) anionic unit composed of a five-member MoO(6) octahedral ring capped by two SeO(3)(2-) trigonal pyramids, with the Rb(+)/K(+) or/and H(+) cations and water molecules acting as spacers and keeping charge balance. Although these compounds exhibit similar chemical formula, their structures are slightly different. HRb(3)(Mo(5)O(15))(SeO(3))(2)(H(2)O)(2)1 crystallizes in a polar space group (Pca2(1)). α-Rb(4)Mo(5)O(15)(SeO(3))(2)(H(2)O)(2)2 crystallizes in a centrosymmetric (CS) space group (P2(1)/n) whereas β-Rb(4)Mo(5)O(15)(SeO(3))(2)(H(2)O)(2)3 and K(4)Mo(5)O(15)(SeO(3))(2)(H(2)O)(2)4 are isomorphous, crystallize in a chiral space group (C2). The chiral structures of 3 and 4 contain two similar polyanions of [Mo(5)O(15)(SeO(3))(2)](4-) with opposite handedness. Second-harmonic-generation (SHG) measurements indicate that 1, 3 and 4 are all SHG-active. Compound 1 displays a weak SHG response of about 20% of that of KDP (KH(2)PO(4)) and is phase-matchable whereas the SHG responses of 3 and 4 are very weak (less than 5% of that of KDP). Thermal analyses and optical property measurements have also been performed.  相似文献   

5.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

6.
DW Lee  SB Kim  KM Ok 《Inorganic chemistry》2012,51(15):8530-8537
A new family of quaternary alkali-metal indium selenites, AIn(SeO(3))(2) (A = Na, K, Rb, and Cs) have been synthesized, as crystals and pure polycrystalline phases through standard solid-state and hydrothermal reactions. The structures of the reported materials have been determined by single-crystal X-ray diffraction. While AIn(SeO(3))(2) (A = Na, K, and Rb) crystallize in the orthorhombic space group, Pnma, with three-dimensional framework structures, CsIn(SeO(3))(2) crystallizes in the trigonal space group, R3?m, with a two-dimensional structure. All of the reported materials, however, share a common structural motif, a network of corner-shared InO(6) octahedra and SeO(3) groups. Interestingly, the size of the alkali-metal cations profoundly influences the bonding nature of the SeO(3) group to the InO(6) octahedra. Complete characterizations including infrared spectroscopy, elemental analyses, and thermal analyses for the compounds are also presented, as are dipole moment calculations. A detailed cation size effect on the framework structure is discussed.  相似文献   

7.
Brownish platelet crystals of My(VO)9 + x(PO4)4x(HPO4)12 - 4x (M = Cs+, NH4+ and Rb+) were prepared hydrothermally. The structure of Cs approximately 5(VO)10(PO4)4(HPO4)8 was solved from single-crystal X-ray diffraction data in the centrosymmetric monoclinic space group C2/c (No. 15) a = 21.1951(8) A, b = 12.2051(4) A, c = 20.6230(8) A, beta = 109.742(2) degrees, Z = 4 (R1(Fo) = 0.054, wR2(Fo2) = 0.123). The structure of Cs approximately 5(VO)10(PO4)4(HPO4)8 is described and compared to that of K2(VO)3(HPO4)4 previously reported by Lii. For the three compounds, thermogravimetric data and susceptibility measurements were investigated and were found to be in agreement with the structural study.  相似文献   

8.
Kim YH  Lee KS  Kwon YU  Han OH 《Inorganic chemistry》1996,35(25):7394-7398
The hydrothermal synthesis, X-ray single crystal structure, magnetic properties, and solid state NMR and infrared spectroscopic data of a new compound, K(VO)(SeO(3))(2)H, are described. K(VO)(SeO(3))(2)H crystallizes in the monoclinic space group P2(1)/m (No. 11), with a = 7.8659(7) ?, b = 10.4298(7) ?, c = 4.0872(7) ?, beta = 96.45(1) degrees, and Z = 4. The structure is described as parallel linear strands made of repeating [(VO)(SeO(3))(2)](2-) units. The chains are held together through hydrogen bondings between selenite oxygens, weak V=O.V=O bonds, and ionic bonds to the interchain K(+) ions. The hydrogen bonding in this compound shows many characteristics of the strong hydrogen bonding with a short O-O distance of 2.459(6) ?, a large down field shift of the proton NMR signal of 19 +/- 1 ppm, and a low O-H absorption frequency. However, the exact position of the hydrogen atom and, thus, the nature of the hydrogen bonding in this compound is unclear. Possible models for the hydrogen atom positions are discussed based on experimental and literature data. The magnetic susceptibility data show an antiferromagnetic coupling below 19 K. The curve can be explained with a 1-D Heisenberg model for S = (1)/(2) with J/k = 13.8 K and g = 1.97.  相似文献   

9.
The reaction of Pb and Eu with a molten mixture of A(2)Se/P(2)Se(5)/Se produced the quaternary compounds APbPSe(4), A(4)Pb(PSe(4))(2) (A = Rb,Cs), and K(4)Eu(PSe(4))(2). The red crystals of APbPSe(4) are stable in air and water. The orange crystals of A(4)Pb(PSe(4))(2) and K(4)Eu(PSe(4))(2) disintegrate in water and over a long exposure to air. CsPbPSe(4) crystallizes in the orthorhombic space group Pnma (No. 62) with a = 18.607(4) ?, b = 7.096(4) ?, c = 6.612(4) ?, and Z = 4. Rb(4)Pb(PSe(4))(2) crystallizes in the orthorhombic space group Ibam (No. 72) with a = 19.134(9) ?, b = 9.369(3) ?, c = 10.488(3) ?, and Z = 4. The isomorphous K(4)Eu(PSe(4))(2) has a = 19.020(4) ?, b = 9.131(1) ?, c = 10.198(2) ?, and Z = 4. The APbPSe(4) have a layered structure with [PbPSe(4)](n)()(n)()(-) layers separated by A(+) ions. The coordination geometry around Pb is trigonal prismatic. The layers are composed of chains of edge sharing trigonal prisms running along the b-direction. [PSe(4)](3)(-) tetrahedra link these chains along the c-direction by sharing edges and corners with the trigonal prisms. A(4)M(PSe(4))(2) (M = Pb, Eu) has an one-dimensional structure in which [M(PSe(4))(2)](n)()(n)()(-) chains are separated by A(+) ions. The coordination geometry around M is a distorted dodecahedron. Two [PSe(4)](3)(-) ligands bridge two adjacent metal atoms, using three selenium atoms each, forming in this way a chain along the c-direction. The solid state optical absorption spectra of the compounds are reported. All compounds melt congruently in the 597-620 degrees C region.  相似文献   

10.
Upon consideration of the hydrogen-bonding properties of the NH(4)(+) cation, we synthesized a new class of compounds, M(3-x)(NH(4))(x)CrO(8) (M = Na, K, Rb, Cs). These magnetic compounds with the simple 3d(1) ground state become ferroelectric. X-ray studies confirmed that the phase transition involves a symmetry change from I42m to Cmc2(1) to P1. The transition temperature depends linearly on the composition variable x. The transitions are of the order-disorder type, with N-H···O bonding playing the central role in the mechanism. Extension of this idea to the introduction of ferroelectricity in several other classes of materials is suggested.  相似文献   

11.
Systematic explorations of new phases in the Ln(III)-V(V)-Se(IV)-O systems by hydrothermal syntheses led to four new quaternary compounds, namely, Nd(2)(V(V)(2)O(4))(SeO(3))(4)·H(2)O (1), Ln(V(V)O(2))(SeO(3))(2) (Ln = Eu 2, Gd 3, Tb 4). The structure of Nd(2)(V(V)(2)O(4))(SeO(3))(4)·H(2)O features a 3D framework composed of the 2D layers of [N d(SeO(3))](+) bridged by the infinite [VO(2)(SeO(3))](-) chains with the lattice water molecules located at the 6-membered ring tunnels formed. The structure of Ln(V(V)O(2))(SeO(3))(2) (Ln = Eu, Gd, Tb) also features a 3D framework composed of 2D layers of [Ln(SeO(3))](+) bridged by the infinite [(VO(2))(SeO(3))](-) double chains. The 1D vanadium oxide selenite chain of 1 differs significantly from those in compounds 2-4 in terms of the coordination modes of the selenite groups and the connectivities between neighbouring VO(6) octahedra. Luminescent and magnetic properties of these compounds were also measured.  相似文献   

12.
Oh SJ  Lee DW  Ok KM 《Inorganic chemistry》2012,51(9):5393-5399
Two new quaternary mixed-metal selenites, SrMo(2)O(5)(SeO(3))(2) and PbMo(2)O(5)(SeO(3))(2), have been synthesized as crystals and pure polycrystalline phases by standard solid-state reactions using SrMoO(4), PbO, MoO(3), and SeO(2) as reagents. The crystal structures of the reported materials have been determined by single-crystal X-ray diffraction. SrMo(2)O(5)(SeO(3))(2) and PbMo(2)O(5)(SeO(3))(2) are isostructural and crystallized in the triclinic centrosymmetric space group P1? (No. 2). The reported materials exhibit chain structures consisting of MoO(6) octahedra and asymmetric SeO(3) polyhedra. Complete characterizations including IR spectroscopy and thermal analyses for the compounds are also presented, as are dipole moment calculations. In addition, the powder second-harmonic-generating (SHG) properties of noncentrosymmetric polar BaMo(2)O(5)(SeO(3))(2) have been measured using 1064 nm radiation. Through powder SHG measurement, we are able to determine that BaMo(2)O(5)(SeO(3))(2) has a SHG efficiency of approximately 80 times that of α-SiO(2). Additional SHG measurements reveal that the material is phase-matchable (type 1). A detailed cation size effect on the symmetry and framework structure is discussed.  相似文献   

13.
The new compounds Rb(3)(AlQ(2))(3)(GeQ(2))(7) [Q = S (1), Se (2)] feature the 3D anionic open framework [(AlQ(2))(3)(GeQ(2))(7)](3-) in which aluminum and germanium share tetrahedral coordination sites. Rb ions are located in channels formed by the connection of 8, 10, and 16 (Ge/Al)S(4) tetrahedra. The isostructural sulfur and selenium derivatives crystallize in the space group P2(1)/c. 1: a = 6.7537(3) ?, b = 37.7825(19) ?, c = 6.7515(3) ?, and β = 90.655(4)°. 2: a = 7.0580(5) ?, b = 39.419(2) ?, c = 7.0412(4) ?, β = 90.360(5)°, and Z = 2 at 190(2) K. The band gaps of the congruently melting chalcogenogermanates are 3.1 eV (1) and 2.4 eV (2).  相似文献   

14.
Black single crystals of A(6)Cu(12)U(2)S(15) (A = K, Rb, Cs) have been synthesized by the reactive flux method. These isostructural compounds crystallize in the cubic space group Ia ?3d at room temperature. The structure comprises a three-dimensional framework built from US(6) octahedra and CuS(3) trigonal planar units with A cations residing in the cavities. There are no S-S bonds in the structure. To elucidate the oxidation state of U in these compounds, various physical property measurements and characterization methods were carried out. Temperature-dependent electrical resistivity measurement on a single crystal of K(6)Cu(12)U(2)S(15) showed it to be a semiconductor. These three A(6)Cu(12)U(2)S(15) (A = K, Rb, Cs) compounds all exhibit small effective magnetic moments, < 0.58 μ(B)/U and band gaps of about 0.55(2) eV in their optical absorption spectra. From X-ray absorption near edge spectroscopy (XANES), the absorption edge of A(6)Cu(12)U(2)S(15) is very close to that of UO(3). Electronic band structure calculations at the density functional theory (DFT) level indicate a strong degree of covalency between U and S atoms, but theory was not conclusive about the formal oxidation state of U. All experimental data suggest that the A(6)Cu(12)U(2)S(15) family is best described as an intermediate U(5+)/U(6+) sulfide system of (A(+))(6)(Cu(+))(12)(U(5+))(2)(S(2-))(13)(S(-))(2) and (A(+))(6)(Cu(+))(12)(U(6+))(2)(S(2-))(15).  相似文献   

15.
Dark green crystals of (NpO(2))(3)(OH)(SeO(3))(H(2)O)(2)·H(2)O (1) have been prepared by a hydrothermal reaction of neptunyl(V) and Na(2)SeO(4) in an aqueous solution at 150 °C, while green plates of Na(NpO(2))(SeO(3))(H(2)O) (2) have been synthesized by evaporation of a solution of neptunyl(V), H(2)SeO(4), and NaOH at room temperature. Both compounds have been characterized by single-crystal X-ray diffraction. The structure of compound contains three crystallographically unique Np atoms that are bonded to two O atoms to form a nearly linear O═Np═O NpO(2)(+) cation. Neighboring Np(5+) ions connect to each other through a bridging oxo ion from the neptunyl unit, a configuration known as cation-cation interactions (CCIs), to build a complex three-dimensional network. More specifically, each Np(1)O(2)(+), Np(2)O(2)(+), and Np(3)O(2)(+) cation is involved in three, five, and four CCIs with other units, respectively. The framework of neptunyl(V) pentagonal bipyramids is decorated by selenite trigonal pyramids with one-dimensional open channels where uncoordinated waters are trapped via hydrogen bonding interactions. Compound adopts uranophane-type [(NpO(2))(SeO(3))](-) layers, which are separated by Na(+) cations and water molecules. Within each layer, neptunyl(V) pentagonal bipyramids share equatorial edges with each other to form a single chain that is further connected by both monodentate and bidentate selenite trigonal pyramids. Crystallographic data: compound, monoclinic, P2(1)/c, Z = 4, a = 6.6363(8) ?, b = 15.440(2) ?, c = 11.583(1) ?, β = 103.549(1)°, V = 1153.8(2) ?(3), R(F) = 0.0387 for I > 2σ(I); compound (2), monoclinic, C2/m, Z = 4, a = 14.874(4) ?, b = 7.271(2) ?, c = 6.758(2) ?, β = 112.005(4)°, V = 677.7(3) ?(3), R(F) = 0.0477 for I > 2σ(I).  相似文献   

16.
New quaternary lithium - d(0) cation - lone-pair oxides, Li(6)(Mo(2)O(5))(3)(SeO(3))(6) (Pmn2(1)) and Li(2)(MO(3))(TeO(3)) (P2(1)/n) (M = Mo(6+) or W(6+)), have been synthesized and characterized. The former is noncentrosymmetric and polar, whereas the latter is centrosymmetric. Their crystal structures exhibit zigzag anionic layers composed of distorted MO(6) and asymmetric AO(3) (A = Se(4+) or Te(4+)) polyhedra. The anionic layers stack along a 2-fold screw axis and are separated by Li(+) cations. Powder SHG measurements on Li(6)(Mo(2)O(5))(3)(SeO(3))(6) using 1064 nm radiation reveal a SHG efficiency of approximately 170 × α-SiO(2). Particle size vs SHG efficiency measurements indicate Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is type 1 nonphase-matchable. Converse piezoelectric measurements result in a d(33) value of ~28 pm/V and pyroelectric measurements reveal a pyroelectric coefficient of -0.43 μC/m(2)K at 50 °C for Li(6)(Mo(2)O(5))(3)(SeO(3))(6). Frequency-dependent polarization measurements confirm that Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is nonferroelectric, i.e., the macroscopic polarization is not reversible, or 'switchable'. Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements and electron localization function calculations were also done for all materials.  相似文献   

17.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

18.
Novel SHG effective inorganic open-framework chalcohalides, Ba(3)AGa(5)Se(10)Cl(2) (A = Cs, Rb and K), have been synthesized by high temperature solid state reactions. These compounds crystallize in the tetragonal space group I ?4 (No.82) with a = b = 8.7348(6) - 8.6341(7) ?, c = 15.697(3) - 15.644(2) ?, V = 1197.6(3) - 1166.2(2) ?(3) on going from Cs to K. The polar framework of (3)(∞)[Ga(5)Se(10)](5-) is constructed by nonpolar GaSe(4)(5- )tetrahedron (T1) and polar supertetrahedral cluster Ga(4)Se(10)(8-) (T2) in a zinc-blende topological structure with Ba/A cations and Cl anions residing in the tunnels. Remarkably, Ba(3)CsGa(5)Se(10)Cl(2) exhibits the strongest intensity at 2.05 μm (about 100 times that of the benchmark AgGaS(2) in the particle size of 30-46 μm) among chalcogenides, halides, and chalcohalides. Furthermore, these compounds are also the first open-framework compounds with red photoluminescent emissions. The Vienna ab initio theoretical studies analyze electronic structures and linear and nonlinear optical properties.  相似文献   

19.
Two new vanadates, Ba(2.5)(VO2)3(SeO3)4.H2O and La(VO2)3(TeO6).3H2O, have been synthesized by hydrothermal methods using BaCO3, Ba(OH)2.H2O, La(NO3)3.6H2O, V2O5, TeO2, and H2SeO3 as reagents. The structures were determined by single-crystal X-ray diffraction. Ba(2.5)(VO2)3(SeO3)4.H2O exhibits a two-dimensional layered structure consisting of VO(5) square pyramids and SeO3 polyhedra, whereas La(VO2)3(TeO6).3H2O has a three-dimensional framework structure composed of VO(4) tetrahedra and TeO6 octahedra. Infrared and Raman spectroscopy, UV-vis diffuse reflectance spectroscopy, and thermogravimetric analysis are also presented. Crystal data: Ba(2.5)(VO2)3(SeO3)4.H2O, trigonal, space group P (No. 147) with a = b = 12.8279(15) A, c = 7.2631(9) A, V = 1035.1(2) A(3), and Z = 2; La(VO2)3(TeO6).3H2O, trigonal, space group R3c (No. 161) with a = b = 9.4577(16) A, c = 23.455(7) A, V = 1816.9(7) A3, and Z = 6.  相似文献   

20.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号