首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A variety of (diphosphine)platinum(II) carbonate complexes, (LL)Pt(CO(3)), are readily prepared from the corresponding (diphosphine)platinum dichlorides by treatment with silver carbonate in dichoromethane solution provided that water is present. This reaction also permits facile preparation of analogous (13)C-labeled complexes. The carbonate ligands in these complexes have been characterized by IR and (13)C NMR spectroscopy. Alternative preparative routes involve conversion of the precursor dichlorides to the corresponding dialkoxides or diphenoxides, followed by treatment with water and carbon dioxide. Various reaction intermediates have been spectroscopically observed in the latter syntheses. Two crystalline modifications of (Ph(2)PCH(2)CH(2)CH(2)PPh(2))Pt(CO(3)), one with and one without a dichloromethane of solvation, have been studied by single-crystal X-ray diffraction. Crystal data for PtP(2)O(3)C(28)H(26): P2(1)/c, Z = 4, T = 200 K, a = 10.362(8) ?, b = 14.743(6) ?, c = 19.183(10) ?, beta = 122.69(6) degrees. Crystal data for PtP(2)O(3)C(28)H(26).CH(2)Cl(2): P2(1)/c, Z = 4, T approximately 298 K, a = 11.744(2) ?, b = 15.526(3) ?, c = 15.866(3) ?, beta = 101.58(1) degrees.  相似文献   

2.
The platinum(II) complexes trans-[PtCl(2)(RR'C=NOH)(2)], where R = R' = Me, RR' = (CH(2))(4) and (CH(2))(5), react with m-chloroperoxybenzoic acid in Me(2)CO to give the platinum(IV) complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] in 50-60% yields. The complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] were characterized by elemental analysis, EI-MS, and IR and Raman spectroscopies; X-ray structure analyses were performed for both trans-[PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and trans-[PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)]. The former compound crystallizes in the triclinic space group P&onemacr; with a = 8.088(2) ?, b = 8.327(2) ?, c = 8.475(2) ?, alpha = 103.54(3) degrees, beta = 102.15(3) degrees, gamma = 108.37(3) degrees, V = 501.0(2) ?(3), Z = 1, and rho(calcd) = 1.917 g cm(-)(3). The latter complex crystallizes in the monoclinic space group C2/c with a = 12.5260(10) ?, b = 9.3360(10) ?, c = 18.699(2) ?, beta = 98.320(10) degrees, V = 2163.7(4) ?(3), Z = 4, and rho(calcd) = 1.862 g cm(-)(3). The structures of [PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and [PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)] show an octahedron of Pt where two Cl atoms and two chelate ligands are mutually trans, respectively.  相似文献   

3.
The reactions of K(2)PtCl(4) with N,N'-diphenylformamidine (HDPhF) and N,N'-di-p-tolylformamidine (HDTolF) produce the trans square-planar compounds PtCl(2)(HDPhF)(2), 1a, and PtCl(2)(HDTolF)(2), 1b. Compound 1a crystallizes as yellow parallelepipeds in the space group P2(1)/c with two independent molecules in the asymmetric unit and unit cell dimensions a = 23.427(7) ?, b = 16.677(6) ?, c = 12.980(4) ?, and beta = 96.10(2) degrees. These compounds are soluble in common organic solvents and have been used as starting materials for the preparation of diplatinum compounds. Treatment of 1a and 1b with NaOMe and the halide abstraction reagent TlPF(6) produces the compounds Pt(2)(&mgr;-DArF)(2)(eta(2)-DArF)(2), Ar = Ph (2a) and Tol (2b), respectively. Compound 2a crystallizes as yellow rods in the space group P&onemacr; with unit cell dimensions a = 12.296(3) ?, b = 12.310(4) ?, c = 15.374(4) ?, alpha = 90.75(2) degrees, beta = 91.02(2) degrees, and gamma = 110.20(2) degrees. Compound 2b crystallizes with a molecule of THF, as yellow rods in the space group P2(1)/c with a = 17.883(3) ?, b = 14.517(3) ?, c = 22.581(3) ?, and beta = 98.17(1) degrees. These compounds contain two cis bridging formamidinato ligands and two formamidinato ligands that are chelated to separate Pt centers. Upon heating, they further react to give the tetrabridged compounds Pt(2)(&mgr;-DArF)(4), Ar = Ph (3a), Tol (3b). Compound 3a crystallizes as orange cubes in the cubic space group I432 with a = 19.671(1) ?. On going from the bis-bridged, bis-chelate structure in 2a to the tetrabridged structure in 3a, the metal-metal separation decreases from 2.910(1) to 2.649(1) ?. Both 2band 3b have been oxidized to give the Pt(II)-Pt(III) compound Pt(2)(&mgr;-DTolF)(4)(PF(6)), 4. Compound 4 crystallizes as cubes in the tetragonal space group P4/ncc with a = 14.392(1) ? and c = 14.436(1) ?. The Pt-Pt distance in 4 is 2.5304(6) ?.  相似文献   

4.
The syntheses and crystal structures of the first cyanide, sulfur mixed ligand copper(I) complexes are reported. The first complex of the family was discovered when (CuCN)(3)(C(6)H(12)N(4))(2) (1) (C(6)H(12)N(4) = hexamethylenetetramine) was treated with aqueous thiourea. The sulfur ligands include thiourea (tu), 1,3-dimethyl-2-thiourea (dmtu), 1,3-diethyl-2-thiourea (detu), 1,1,3,3-tetramethyl-2-thiourea (tmtu), and 2-imidazolidinethione (N,N'-ethylenethiourea, etu). Synthesis was effected by adding the ligand to a solution of CuCN in aqueous sodium thiosulfate. Complex 2, (CuCN)(2)(tu)(3)(H(2)O), crystallizes in the triclinic space group P&onemacr;with unit cell dimensions a = 7.696(5) ?, b = 9.346(2) ?, c = 10.772(2) ?, alpha = 106.53(2) degrees, beta = 91.11(4) degrees, gamma = 98.42(3) degrees, and Z = 2. Complex 3, (CuCN)(3)(dmtu)(2), crystallizes in the monoclinic space group Cc with unit cell dimensions a = 10.082(3) ?, b = 14.984(5) ?, c = 11.413(3) ?, beta = 104.50(2) degrees, and Z = 4. Complex 4, (CuCN)(2)(detu)(H(2)O), crystallizes in the monoclinic space group P2(1)/n with unit cell dimensions a = 7.969(5) ?, b = 11.559(4) ?, c = 13.736(5) ?, beta = 100.48(4) degrees, and Z = 4. Complex 5, (CuCN)(tmtu) (polymorph a), crystallizes in the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions a = 8.653(1) ?, b = 9.426(1) ?, c = 11.620(3) ?, and Z = 4. Complex 6, (CuCN)(tmtu) (polymorph b), which has the same connectivity as 5, crystallizes in the triclinic space group P&onemacr; with unit cell dimensions a = 9.660(4) ?, b = 14.202(4) ?, c = 16.03(1) ?, alpha = 101.68(5) degrees, beta = 107.08(6) degrees, gamma = 70.07(2) degrees, and Z = 8. The difference between the polymorphs is that 5 has a zig-zag chain with a repeat unit of two while 6 has a 4-fold helix. Complex 7, (CuCN)(2)(etu), crystallizes in the monoclinic space group P2(1)( )()with unit cell dimensions a = 3.994(2) ?, b = 13.886(3) ?, c = 7.556(1) ?, beta = 97.07(2) degrees, and Z = 2.  相似文献   

5.
cis-Bis-homoleptic platinum(II) complexes, with predetermined helical chirality at the metal center, can be obtained by using strongly sterically interacting ligands. With this aim, two new ligands, (8R,10R)-2-(2'-thienyl)-4,5-pinenopyridine, th4,5ppy (2), and (8R,10R)-2-(2'-thienyl)-5,6-pinenopyridine, th5,6ppy (4), were synthesized and coordinated to platinum. The structures of the resulting complexes, Pt(th4,5ppy)(2) (5) and Pt(th5,6ppy)(2) (6), were determined by X-ray diffraction, and it was found that they both crystallize with a Delta-cis configuration. Thermal oxidative additions (TOA) of alkyl halides were performed with both complexes leading, in the case of 5, to a mixture of isomers and, in the case of 6, to isomerically pure products. The predetermination of chirality at the metal center is therefore preserved in the octahedral (OC-6) platinum(IV) complexes. Crystals of Pt(th4,5ppy)(2) (5) are orthorhombic, of space group P2(1)2(1)2(1), with a = 12.973(1) ?, b = 13.619(2) ?, c = 17.665(2) ?, alpha = beta = gamma = 90 degrees, and Z = 4. Final R = 0.0268 and R(w) = 0.0424 for 3101 observed reflections. Crystals of Pt(th5,6ppy)(2) (6) are hexagonal, of space group P6(1), with a = 11.5465(4) ?, b = 11.5465(4) ?, c = 35.356(3) ?, alpha = beta = 90 degrees, gamma = 120 degrees, and Z = 6. Final R = 0.0424 and R(w) = 0.0845 for 2660 observed reflections. Neither molecule possesses a crystallographic C(2) symmetry.  相似文献   

6.
Comparisons of the spectroscopic properties of a number of Ru(III) complexes of imidazole ligands provide methods of distinguishing between various types of bonding that can occur in proteins and nucleic acids. In particular, EPR and (1)H NMR parameters arising from the paramagnetism of Ru(III) should aid in determining binding sites of Ru(III) drugs in macromolecules. Electrochemical studies on several imidazole complexes of ruthenium suggest that imidazole may serve as a significant pi-acceptor ligand in the presence of anionic ligands. Crystal structures are reported on two active immunosuppressant complexes. cis-[(Im)(2)(NH(3))(4)Ru(III)]Br(3) crystallizes in the triclinic space group P&onemacr; (No. 2) with the cell parameters a = 8.961(2) ?, b = 12.677(3) ?, c = 7.630(2) ?, alpha = 98.03(2) degrees, beta = 100.68(2) degrees, gamma = 81.59(2) degrees, and Z = 2 (R = 0.044). [(1MeIm)(6)Ru(II)]Cl(2).2H(2)O crystallizes in the monoclinic space group P2(1)/n (No. 14) with the cell parameters a = 7.994(2) ?, b = 13.173(4) ?, c = 14.904(2) ?, beta = 97.89(1) degrees, and Z = 2 (R = 0.052). The average Ru(II)-N bond distance is 2.106(8) ?.  相似文献   

7.
Electrophilic attack of 1 equiv of I(2) on a PC(sp)2 carbon of the Pt(II) complex (1) afforded (2) in 90% yield. Complex 2 was subsequently deprotonated by NaOEt in ethanol to give the bis(enolato) complex (3). This alpha-phosphino, alpha-iodo enolato complex was obtained directly and quantitatively by the reaction of 1 with 1 equiv of N-iodosuccinimide (NIS). When 2 equiv of NIS was used, the symmetrical complex (4) was formed selectively. In contrast to I(2), NIS was also able to functionalize the phosphino enolate ligand of complexes to give the corresponding iodo derivatives (C N = dmba (5) or 8-mq (6)). These represent the first examples in which a phosphino enolate C-H bond has been directly functionalized, i.e. replaced by a C-X bond. Attempts to use this procedure with or with were unsuccessful. Reaction of 5 with Pd(dba)(2) in the presence of tetramethylenediamine (tmeda) or 2,2'-bipyridine (bipy) afforded (7) and (8), respectively. The solid state structures of complexes 5 and 7.CH(2)Cl(2) have been determined by single-crystal X-ray diffraction: 5 crystallizes in the monoclinic space group P2(1)/n with Z = 4 in a unit cell of dimensions a = 12.867(3) ?, b = 10.625(3) ?, c = 19.509(6) ?, and beta = 102.23(2) degrees; 7.CH(2)Cl(2) crystallizes in the monoclinic space group C2/c with Z = 8 in a unit cell of dimensions a = 35.906(3) ?, b = 13.565(3) ?, c = 15.775(2) ?, and beta = 95.099(10) degrees. Complex 7 contains two palladium(II) centers, in a square-planar environment, connected by the P-C unit of a phosphino enolate ligand which adopts an unprecedented &mgr;-eta(2)(P,C):eta(2)(P,O) bonding mode. The two coordination planes are almost orthogonal and make a dihedral angle of 88.0(2) degrees, which minimizes the steric hindrance between the ligands.  相似文献   

8.
The hexaaza macrocyclic ligand 3,6,9,16,19,22-hexaaza-27,28-dioxatricyclo[22.2.1.1(11,14)]octacosa-1(26),11,13,24-tetraene (BFBD), forms both mono- and dinuclear complexes, as well as several protonated and hydroxo chelates, with Cu(II) ions. These cationic species can bind inorganic and organic anions through coordination and hydrogen bonding. Stability constants of the mono- and dinuclear Cu(II) complexes of BFBD and their interaction with oxalate, malonate, and pyrophosphate anions have been measured potentiometrically. The nature of the bonding between the hosts and the guests is discussed. The crystal structures of two new dinuclear Cu(II) complexes, determined by X-ray crystallography, are also reported. [BFBDCu(2)(Cl)(3)]ClO(4).0.5H(2)O crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.267(2) ?, b = 12.155(6) ?, c = 18.461 0 ?, beta = 90.86(2) degrees, and Z = 4. Each Cu(II) ion is coordinated by three nitrogen atoms from the diethylenetriamine unit of the macrocyclic ligand and two chloride anions, forming a square pyramidal geometry. [BFBDCu(2)(Ox)](BF(4))(1.8)Cl(0.2) crystallizes in the triclinic system, space group P1, with a = 6.772(1) ?, b = 10.646(2) ?, c = 11.517(2) ?, alpha = 64.74(3) degrees, beta = 79.79(3) degrees, gamma = 81.94(3) degrees, and Z = 1. The environment of each copper is intermediate between square pyramidal and trigonal pyramidal. The oxalate anion bridges in a bis-bidentate fashion between two Cu(II) ions.  相似文献   

9.
The antitumor drugs 1-nitro-9-[(2-(dialkylamino)ethyl)amino]acridines (alkyl = Me, A(1); Et, A(2)) with platinum(II) give tridentate coordination compounds in which the two nitrogens of the ethylenediamine side chain and the C(8) carbon atom of the acridine ring system act as donor atoms. An excess of triphenylphosphine displaces the residual chloride coordinated to platinum but leaves unaltered the tridentate acridine ligand. The structures of [Pt(A(1)-H)Cl], 1, and [Pt(A(1)-H)(PPh(3))]Cl, 3, have been solved by single-crystal X-ray diffraction. 1.CHCl(3) crystallizes in the orthorhombic system, space group P2(1)2(1)2(1) (no. 19), with a = 8.715(1) ?, b = 11.045(2) ?, c = 22.609(4) ?, Z = 4, R = 0.0559, and R(w) = 0.0561 for 1502 reflections with F > 3sigma(F). 3.(1)/(2)CH(2)Cl(2) crystallizes in the monoclinic system, space group P2(1)/c (no. 14), with a = 13.418(3) ?, b = 14.053(3) ?, c = 18.918(4) ?, beta = 97.21(3) degrees, Z = 4, R = 0.0591, and R(w) = 0.0611 for 3608 reflections with F > 4sigma(F). In both complexes the acridine ligand adopts an imino-type configuration with the proton of the exocyclic 9-amino group shifted on N(10). Because of a severe steric interaction between the nitro group in the 1-position and the chelate diamine chain in the 9-position, the acridine moiety is folded about the C(9)-N(10) vector with an average angle between outer rings of 12 degrees. Moreover, the acridine aromatic moiety and the platinum coordination planes are twisted, forming a dihedral angle of ca. 20 degrees. The steric repulsion between the nitro and the diamine groups appears to provide the driving force to metalation. The H(10) proton has a great tendency to be engaged in H-bonding as shown by X-ray and solution studies. The formation of a H-bond with a rather poor acceptor such as the chloride ion can cause a downfield shift of the H-resonance as large as 6 ppm.  相似文献   

10.
Chen W  Liu F  Xu D  Matsumoto K  Kishi S  Kato M 《Inorganic chemistry》2006,45(14):5552-5560
The neutral square-planar complexes [Pt(RNH2)2(NHCO(t)Bu)2] (R = H, 1; Et, 2) and [Pt(DACH)(NHCO(t)Bu)2] (DACH = 1,2-diaminocyclohexane, 3) act as metalloligands and make bonds to closed-shell Tl(I) ions to afford one- and two-dimensional platinum-thallium oligomers or polymers based on heterobimetallic backbones. A series of heteronuclear platinum(II)-thallium(I) complexes have been synthesized and structurally characterized. The structures of the Pt-Tl compounds resulted from [Pt(RNH2)2(NHCO(t)Bu)2] and TlX [X = NO3(-), ClO4(-), PF6(-), and Cp2Fe(CO2)2(2-)] are dependent on both counteranions and the amine substituents. The compounds [Pt(NH3)2(NHCO(t)Bu)2Tl]X (X = NO3(-), 8; ClO4(-), 9) adopt one-dimensional zigzag chain structures consisting of repeatedly stacked [Pt(NH3)2(NHCO(t)Bu)2Tl]+ units, whereas [{Pt(NH3)2(NHCO(t)Bu)2}2Tl2]X2 (X = PF6(-), 10) consists of a helical chain. Compound 3 reacts with Tl+ to give [{Pt(DACH)(NHCO(t)Bu)2}2Tl](NO3) x [Pt(DACH)(NHCO(t)Bu)2] x 3 H2O (14) and one-dimensional polymeric [{Pt(DACH)(NHCO(t)Bu)2}2Tl2]X2 (X = ClO4(-), 15; PF6(-), 16). Reactions of [Pt(DACH)(NHCOCH3)2] with Tl+ ions afford one-dimensional coordination polymers [{Pt(DACH)(NHCOCH3)2}2Tl2]X2 (X = NO3(-), 17; ClO4(-), 18; PF6(-), 19). The polymeric [{Pt(DACH)(NHCOR')2}2Tl2]2+ (R = CH3, (t)Bu) complexes adopt helical structures, which are generated around the crystallographic 2(1) screw axis. The distance between the coils corresponds to the unit cell length, which ranges from 22.58 to 22.68 A. The platinum-thallium bond distances fall in a narrow range around 3.0 A. The complexes derived from [Pt(NH3)2(NHCO(t)Bu)2] are luminescent at 77 K. The trinuclear complexes [{Pt(RNH2)(NHCO(t)Bu)2}2Tl]+ do not emit at room temperature but are emissive at 77 K, whereas the polymeric platinum-thallium complexes containing 1,2-diaminocyclohexane are intensively luminescent at both room temperature and 77 K. The color variations are interesting; 15 exhibits intense yellow-green, 16 exhibits green, and 17-19 exhibit blue luminescence. The presence of bonding between platinum and thallium is supported by the short metal-metal separations and the strong low-energy luminescence of these compounds in their solid states.  相似文献   

11.
Three dipeptide complexes of the form K[Pt(IV)(dipep)Cl3] and two complexes of the form K[Pt(IV)(Hdipep)Cl4] were newly prepared and isolated. The platinum(IV) complexes containing the dipeptide were obtained directly by adding KI to H2[PtCl6] solution. The reaction using KI was rapidly completed and provided analytically pure yellow products in the form of K[Pt(dipeptide)Cl3] for H2digly, H2gly(alpha)-ala, H2alpha-alagly and H2di(alpha)-ala. The K[Pt(IV)(digly)Cl3] complex crystallizes in the monoclinic space group P2(1)/c with unit cell dimensions a = 10.540(3) A, b = 13.835(3) A, c = 8.123(3) A, beta = 97.01(2) degrees, Z = 4. The crystal data represented the first report of a Pt(IV) complex with a deprotonated peptide, and this complex has the rare iminol type diglycine(2-) coordinating to Pt(IV) with the bond lengths of the C2-N1 (amide) bond (1.285(13) A). The 195Pt NMR peaks of the K[Pt(IV)(dipep)Cl3] and the K[Pt(IV)(Hdipep)Cl4] complexes appeared at about 270 ppm and at about -130 ppm, respectively, and were predicted for a given set of ligand atoms. While the K[Pt(IV)(x-gly)Cl3] complexes, where x denotes the glycine or alpha-alanine moieties, were easily reduced to the corresponding platinum(II) complexes, the K[Pt(IV)(x-alpha-ala)Cl3] complexes were not reduced, but the Cl- ion was substituted for OH- ion in the reaction solution. The K[Pt(digly)Cl3] and K[Pt(gly-L-alpha-ala)Cl3] complexes inhibited the growth of Candida albicans, and the antifungal activities were 3- to 4-fold higher than those of cisplatin. The metabolism of glucose in C. albicans was strongly inhibited by K[Pt(digly)Cl3] and K[Pt(gly-L-alpha-ala)Cl3] but not by the antifungal agent fluconazole.  相似文献   

12.
Two isomers of the phosphido-bridged platinum cluster Pt(3)(&mgr;-PPh(2))(3)Ph(PPh(3))(2) (2 and 3) have been isolated, and their structures have been solved by single-crystal X-ray diffraction. Compound 2 crystallizes in the orthorhombic space group Cmc2(1) with a = 22.192(10) ?, b = 17.650(9) ?, c = 18.182(8) ?, and Z = 4. Compound 3 crystallizes with 2 molecules of dichloromethane in the monoclinic space group C2/c with a = 21.390(10) ?, b = 18.471(9) ?, c = 19.021(11) ?, beta = 105.27(5) degrees, and Z = 4. The two isomers differ essentially in their metal-metal distances and Pt-(&mgr;-PPh(2))-Pt angles. Thus 2, having an imposed C(s) symmetry, contains a bent chain of metal atoms with two short Pt-Pt distances of 2.758(3) ? and a long separation of 3.586(2) ?. In 3, which has an imposed C(2) symmetry, the metal atoms form an isosceles triangle with two Pt-Pt distances of 2.956(3) ? and one of 3.074(4) ?. These isomers can be smoothly interconverted by changing the crystallization solvents. Solution and solid-state (31)P NMR studies have been performed in order to assign the resonances of the different P nuclei and relate their chemical shifts with their structural environments. Raman spectroscopy was used to assign the nu(Pt-Pt) modes of the two structural isomers. Theoretical studies based on extended Hückel calculations and using the fragment molecular orbital approach show that the isomer with the three medium Pt-Pt distances is slightly more stable, in agreement with earlier theoretical predictions. Cluster core isomerism remains a rare phenomenon, and the present example emphasizes the role and the importance of flexible phosphido bridges in stabilizing clusters as well as the unprecedented features which can be observed in phosphine phosphido-rich metal clusters.  相似文献   

13.
NMR spectroscopic studies reveal that binding of Na(+) by tris(2-methoxyphenyl)amine (3) brings two of these tripod ethers together about the metal ion; the related double-tripod-ether ionophore 1,2-bis[2-(bis(2-methoxyphenyl)amino)phenoxy]ethane (4), in which two triarylamines are covalently attached, binds LiI, LiBPh(4), NaI, NaBPh(4), and KB(4-ClPh)(4). Dynamic NMR puts lower limits on binding free energies of 4 for Na(+) (71.8 kJ mol(-)(1)) and K(+) (66.8 kJ mol(-)(1)) ions. X-ray studies of 3(2).NaBPh(4), 4.NaBPh(4), 4.NaB(4-ClPh)(4), and 4.KB(4-ClPh)(4).CH(3)NO(2) show eight-coordinate M(+) ions bound between crystallographically independent, homochiral triarylamine tripod ethers in structures reminiscent of alkali metal [2.2.2] cryptates. Complexes crystallize as follows: 3(2).NaBPh(4), monoclinic, P2(1)/c, Z = 4, a = 10.701(3) ?, b = 37.593(3) ?, c = 13.774(2) ?, and beta = 98.24(2) degrees; 4.NaBPh(4), triclinic, P&onemacr;, Z = 2, a = 12.157(1) ?, b = 14.811(1) ?, c = 15.860(2) ?, alpha = 105.400(8) degrees, beta = 91.594(9) degrees, and gamma = 95.354(8) degrees; 4.NaB(4-ClPh)(4), monoclinic, P2(1)/n, Z = 4, a = 13.652(5) ?, b = 18.75(1) ?, c = 22.805(5) ?, and beta = 92.21(5) degrees; 4.KB(4-ClPh)(4).CH(3)NO(2), monoclinic, Pn, Z = 2, a = 13.663(4) ?, b = 12.228(3) ?, c = 18.712(8) ?, and beta = 91.45(3) degrees. They show variable N-M-N angles; 3(2).NaBPh(4) is surprisingly bent ( angleN-Na-N = 154.5 degrees ), while the 4.M(+) complexes are normal: nearly linear for Na(+) ( angleN-Na-N = 178.6, 178.1 degrees ) and again bent with the larger K(+) ( angleN-K-N = 164.5 degrees ). Finally, free 4 is structurally similar to 3; it crystallizes in the triclinic space group P&onemacr;, with Z = 2, a = 8.068(1) ?, b = 14.599(2) ?, c = 16.475(3) ?, alpha = 115.43(1) degrees, beta = 92.51(1) degrees, and gamma = 90.40(1) degrees.  相似文献   

14.
The synthesis, structural characterization, spectroscopic, and electrochemical properties of N(2)S(2)-ligated Ni(II) complexes, (N,N'-bis(2-mercaptoethyl)-1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), and (N,N'-bis(2-mercapto-2-methylpropane)1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), derivatized at S with alcohol-containing alkyl functionalities, are described. Reaction of (bme-daco)Ni(II) with 2-iodoethanol afforded isomers, (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-O,N,N',S,S')halonickel(II) iodide (halo = chloro or iodo), 1, and (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-N,N',S,S')nickel(II) iodide, 2, which differ in the utilization of binding sites in a potentially hexadentate N(2)S(2)O(2) ligand. Blue complex 1 contains nickel in an octahedral environment of N(2)S(2)OX donors; X is best modeled as Cl. It crystallizes in the monoclinic space group P2(1)/n with a = 12.580(6) ?, b = 12.291(6) ?, c = 13.090(7) ?, beta = 97.36(4) degrees, and Z = 4. In contrast, red complex 2 binds only the N(2)S(2) donor set forming a square planar nickel complex, leaving both -CH(2)CH(2)OH arms dangling; the iodide ions serve strictly as counterions. 2 crystallizes in the orthorhombic space group Pca2(1) with a = 15.822(2) ?, b = 13.171(2) ?, c = 10.0390(10) ?, and Z = 4. Reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol affords another octahedral Ni species with a N(2)S(2)OBr donor set, ((5-hydroxy-3,7-dithianonadiyl)-1,5-diazacyclooctane-O,N,N',S,S')bromonickel(II) bromide, 3. Complex 3 crystallizes in the orthorhombic space group Pca2(1) with a = 15.202(5) ?, b = 7.735(2) ?, c = 15.443(4) ?, and Z = 4. Complex 4.2CH(3)CN was synthesized from the reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol. It crystallizes in the monoclinic space group P2/c with a = 20.348(5) ?, b = 6.5120(1) ?, c = 20.548(5) ?, and Z = 4.  相似文献   

15.
The palladium(II) and platinum(II) bis-homoleptic complexes M(C&arcraise;N)(2), where C&arcraise;N is benzo[h]quinoline (H-bhq), 2-phenylpyridine (H-phpy), 2-(2'-benzothienyl)pyridine (H-bthpy), 2-(2'-thienyl)quinoline (H-thq), and 2-(2'-thienyl)pyridine (H-thpy), were prepared by metal exchange of the lithiated ligands C&arcraise;N with M(Et(2)S)(2)Cl(2). The palladium(II) bis-heteroleptic complexes, Pd(C&arcraise;N)(C'&arcraise;N'), were synthesized from Pd(C&arcraise;N)(2) bis-homoleptic complexes, which were converted by HCl into the dichloro-bridged compounds [Pd(C&arcraise;N)Cl](2). By addition of Et(2)S, the Pd(C&arcraise;N)(Et(2)S)Cl complexes were formed, which were allowed to react with Li(C'&arcraise;N'), yielding M(C&arcraise;N)(C'&arcraise;N') compounds. An alternative way for obtaining the bis-heteroleptic molecules is by ligand exchange, according to the equilibrium M(C&arcraise;N)(2) + M(C'&arcraise;N')(2) = 2M(C&arcraise;N)(C'&arcraise;N'). The crystal structures of Pt(bhq)(2) (1) and Pt(thq)(2) (3) present an important distortion of the square planar (SP-4) geometry toward a two-bladed helix. Bis-homoleptic and some bis-heteroleptic complexes of palladium(II) have also been synthesized. In both cases, the steric interactions between the two ligands cause again a helical distortion rather than yielding trans compounds. For cis-bis(benzo[h]quinoline)platinum(II) (1), in the crystal (monoclinic, space group P2(1)/n, a = 13.728(3) ?, b = 6.9537(15) ?, c = 19.701(5) ?, beta = 106.17(2) degrees, Z = 4, rho(calcd) = 2.028 g.cm(-)(3); diffractometer measurements, block-matrix least-squares refinement, R = 0.043, R(w) = 0.047) the average Pt-N and Pt-C distances are 2.151(6) and 1.988(7) ?, respectively. One benzo[h]quinoline ligand is significantly less planar than the other. For cis-bis[2-(2'-thienyl)quinoline]platinum(II) (3), in the crystal (trigonal, space group P3(2)21, a = b = 9.373(1) ?, c = 20.152(3) ?, Z = 3, rho(calcd) = 2.022 g.cm(-)(3); diffractometer measurements, full-matrix least-squares refinement, R = 0.010, R(w) = 0.010) the molecule has C(2) symmetry and is chiral. The Pt-N and Pt-C bond lengths are 2.156(2) and 1.984(3) ?, respectively. The quinoline moitey is not planar but bent about the fused bond by 6.8 degrees. The thiophene moiety is inclined to the best plane through the quinoline moiety by 24.4 degrees.  相似文献   

16.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   

17.
Three new platinum complexes containing 3,3'-biisoquinoline (i-biq), [Pt(CN)(2)(i-biq)] (1), [PtCl(2)(i-biq)] (2), and [Pt(i-biq)(2)](PF(6))(2) (3), have been synthesized as orange-red, yellow, and colorless crystals, respectively. Their crystal structures and luminescence properties are reported. Crystal data: for 1.0.5H(2)O, PtO(0.5)N(4)C(20)H(13), orthorhombic, Pbcm, a = 13.989(2) ?, b = 18.304(1) ?, c = 6.682(3) ?, V = 1710.9(6) ?(3), Z = 4, and final R = 0.039 (R(w) = 0.033) for 970 independent reflections; for 2.DMF.H(2)O, PtCl(2)O(2)N(3)C(21)H(21), triclinic, P&onemacr;, a = 11.047(1) ?, b = 12.397(3) ?, c = 8.000(2) ?, alpha = 106.56(1) degrees, beta = 100.15(1) degrees, gamma = 76.15(1) degrees, V = 1012.8(3) ?(3), Z = 2, and final R = 0.058 (R(w) = 0.077) for 4219 independent reflections; for 3.2DMF, PtP(2)F(12)O(2)N(6)C(42)H(38), triclinic, P&onemacr;, a = 10.795(2) ?, b = 13.511(2) ?, c = 8.281(1) ?, alpha = 105.22(1) degrees, beta = 112.17(1) degrees, gamma = 85.02(1) degrees, V = 1079.2(3) ?(3), Z = 1, and final R = 0.038 (R(w) = 0.042) for 3606 independent reflections. Square-planar complexes of 1 are stacked in the crystal to form a columnar structure with the Pt-Pt distance of 3.34 ?. The crystal emits strongly, even at room temperature, and the emission spectrum is similar to that for the [Pt(CN)(2)(bpy)] crystal (bpy = 2,2'-bipyridine), which is due to a (3)dpi[dsigma(Pt) --> pi(i-biq)] transition. The single crystal emission spectrum at 77 K is, however, observed as a superposition of broad (3)dpi and sharp (3)pipi(i-biq) emissions. The crystal structure of 2 has a completely different stacking structure from that of 1. The stacking occurs on the i-biq ligands, and the Pt atoms are separated more than 6 ?. The complex exhibits only a structured emission component assigned to the (3)pipi(i-biq) transition in the crystal at 77 K, in agreement with the crystal structure with no Pt-Pt interaction. In the crystal of 3, the [Pt(i-biq)(2)](2+) complexes are stacked but offset, being in close contact between parts of adjacent i-biq ligands. There is no Pt-Pt interaction also in this case. Two i-biq ligands in the complex are distorted to adopt the bowed conformation due to the steric crowding of the alpha-hydrogens on opposite ligands. Nevertheless, 3 provides almost the same (3)pipi emission spectrum as 1 and 2 in dilute glassy solution at 77 K. The (3)pipi emission spectra observed in the crystals of these Pt(II) complexes are red-shifted compared with those in dilute glassy solution. The fact is attributable to the pi-pi intermolecular interactions between the ligands in the crystals. The factors controlling the crystal structures for these complexes are also discussed.  相似文献   

18.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

19.
The tetraphenylimidodiphosphinate [N-(P,P-diphenylphosphinoyl)-P,P-diphenylphosphinimidate] ion forms stable tris-chelates with the Bi(III), In(III), and Ga(III) cations. The crystal and molecular structures of [M{(OPPh(2))(2)N}(3)] (M = Ga, In, Bi) were determined by X-ray diffractometry. The geometry around the bismuth atom in compound 3 displays an approximately C(3)(v)() symmetry. This arrangement suggests the presence of a stereoactive lone pair of electrons, which is located in one of the triangular octahedral faces. Derivative 3 crystallizes in the triclinic space group P&onemacr; with Z = 2, a = 14.006(6) ?, b = 14.185(4) ?, c = 17.609(8) ?, alpha = 88.45(2) degrees, beta = 79.34(2) degrees, and gamma = 78.23(2) degrees. The structures of the gallium(III) and indium(III) tris-chelate oxygen-based complexes (1 and 2, respectively) were compared with the bismuth analogue in order to determine the ligand steric bulk influence on the coordination sphere in the absence of the electron lone pair. Complex 1 crystallizes as the [Ga{(OPPh(2))(2)N}(3)].CH(2)Cl(2) solvate in the triclinic space group P&onemacr;; Z = 2, a = 13.534(4) ?, b = 13.855(4) ?, c = 18.732(7) ?, alpha = 95.48(2) degrees, beta = 98.26(2) degrees, and gamma = 97.84(2) degrees. Crystal data for the benzene solvate of 2, [In{(OPPh(2))(2)N}(3)].C(6)H(6): triclinic space group P&onemacr;, Z = 2, a = 13.542(9) ?, b = 15.622(3) ?, c = 18.063(5) ?, alpha = 98.21(1) degrees, beta = 104.77(0) degrees, and gamma = 92.260(0) degrees.  相似文献   

20.
The complexes M(3)[Pt(SnX(3))(5)] (M = Bu(4)N(+), PhCH(2)PPh(3)(+); X = Cl, Br), cis-M(2)[PtX(2)(SnX(3))(2)] (M = Bu(4)N(+), PhCH(2)PPh(3)(+), CH(3)PPh(3)(+), Pr(4)N(+); X = Cl, Br), and [PhCH(2)PPh(3)](2)[PtBr(3)(SnBr(3))] have been prepared and characterized by (119)Sn and (195)Pt NMR, far-infrared, and electronic absorption and emission spectroscopies. In acetone solutions the [Pt(SnX(3))(5)](3)(-) ions retain their trigonal bipyramidal structures but are stereochemically nonrigid as evidenced by (119)Sn and (195)Pt NMR spectroscopy. For [Pt(SnCl(3))(5)](3)(-) spin correlation is preserved between 183 and 363 K establishing that the nonrigidity is due to intramolecular tin site exchange, probably via Berry pseudorotation. Whereas, [Pt(SnCl(3))(5)](3)(-) does not undergo loss of SnCl(3)(-) or SnCl(2) to form either [Pt(SnCl(3))(4)](2)(-) or [PtCl(2)(SnCl(3))(2)](2)(-), [Pt(SnBr(3))(5)](3)(-) is not stable in acetone solution in the absence of excess SnBr(2) and forms [PtBr(2)(SnBr(3))(2)](2)(-) and [PtBr(3)(SnBr(3))](2)(-) by loss of SnBr(2). Similarly, [PtCl(2)(SnCl(3))(2)](2)(-) is stable in acetone at ambient temperatures but disproportionates at elevated temperatures and [PtBr(2)(SnBr(3))(2)](2)(-) loses SnBr(2) in acetone to form [PtBr(3)(SnBr(3))](2)(-). The crystal structures of methyltriphenylphosphonium cis-dibromobis(tribromostannyl)platinate(II) and benzyltriphenylphosphonium tribromo(tribromostannyl)platinate(II) have been determined. Both compounds crystallize in the triclinic space group P&onemacr; in unit cells with a = 12.293(16) ?, b = 12.868(6) ?, c = 25.047(8) ?, alpha = 96.11(3) degrees, beta = 91.06(3) degrees, gamma = 116.53(3) degrees, rho(calc) = 2.30 g cm(-)(3), Z = 3 and with a = 11.046(7) ?, b = 14.164(9) ?, c = 22.549(10) ?, alpha = 89.44(4) degrees, beta = 83.32(5) degrees, gamma = 68.31(5) degrees, rho(calc) = 1.893 g cm(-)(3), Z = 2, respectively. Least-squares refinements converged at R = 0.057 and 0.099 for 4048 and 4666 independent observed reflections with I/sigma(I) > 3.0 and I/sigma(I) > 2.0, respectively. For the former, the asymmetric unit contains 1.5 cis-[PtBr(2)(SnBr(3))(2)](2)(-) ions, 0.5 of which is disordered in such a way as to be pseudocentrosymmetric. This disordering involves a half-occupied PtBr(2) unit appearing on either side of the center. Simultaneously, one bromine from each SnBr(3) ligand changes sides while the other two bromines appear in average positions with very small displacements between their positions. The Pt-Sn distance in [PtBr(3)(SnBr(3))](2)(-) (2.486(3) ?) is slightly shorter than that incis-[PtBr(2)(SnBr(3))(2)](2)(-) (2.4955(3) ?, average), and both are significantly longer than that previously found in cis-[PtCl(2)(SnCl(3))(2)](2)(-) (2.3556 ?, average), which is not consistent with the relative magnitudes of the (1)J((195)Pt-(119)Sn) coupling constants (28 487, 25 720, and 27 627 Hz, respectively). From our electronic absorption and emission studies of the Pt-SnX(3)(-) complexes, we conclude that (a) the low-energy transitions are d-d transitions analogous to those found in [PtX(4)](2)(-) systems, (b) the SnCl(3)(-) ligand is a stronger sigma donor than SnBr(3)(-), (c) the triplet state from which the emission occurs is split by spin-orbit coupling into different spin-orbit states, (d) a forbidden spin-orbit state must lie at or near the bottom of the spin-orbit manifold, (e) the solid state crystal environment perturbs the platinum-tin halide electronic states, and (f) dispersion of the samples in solvents changes this perturbation, which can be rationalized in terms of an in-plane distortion of the square planar platinum coordination sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号