首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The 2,2,2-crypt salts of the Tl4Se8(4-) and [Tl2Se4(2-)]infinity1 anions have been obtained by extraction of the ternary alloy NaTl0.5Se in ethylenediamine (en) in the presence of 2,2,2-crypt and 18-crown-6 followed by vapor-phase diffusion of THF into the en extract. The [2,2,2-crypt-Na]4[Tl4Se8].en crystallizes in the monoclinic space group P2(1)/n, with Z = 2 and a = 14.768(3) angstroms, b = 16.635(3) angstroms, c = 21.254(4) angstroms, beta = 94.17(3) degrees at -123 degrees C, and the [2,2,2-crypt-Na]2[Tl2Se4]infinity1.en crystallizes in the monoclinic space group P2(1)/c, with Z = 4 and a = 14.246(2) angstroms, b = 14.360(3) angstroms, c = 26.673(8) angstroms, beta = 99.87(3) degrees at -123 degrees C. The TlIII anions, Tl2Se6(6-) and Tl3Se7(5-), and the mixed oxidation state TlI/TlIII anion, Tl3Se6(5-), have been obtained by extraction of NaTl0.5Se and NaTlSe in en, in the presence of 2,2,2-crypt and/or in liquid NH3, and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy. The 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl) couplings of the three anions have been used to arrive at their solution structures by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR subspectra arising from natural abundance 205,203Tl and 77Se isotopomer distributions. The structure of Tl2Se6(6-) is based on a Tl2Se2 ring in which each thallium is bonded to two exo-selenium atoms so that these thalliums are four-coordinate and possess a formal oxidation state of +3. The Tl4Se8(4-) anion is formally derived from the Tl2Se6(6-) anion by coordination of each pair of terminal Se atoms to the TlIII atom of a TlSe+ cation. The structure of the [Tl2Se4(2-)]infinity1 anion is comprised of edge-sharing distorted TlSe4 tetrahedra that form infinite, one-dimensional [Tl2Se42-]infinity1 chains. The structures of Tl3Se6(5-) and Tl3Se7(5-) are derived from Tl4Se4-cubes in which one thallium atom has been removed and two and three exo-selenium atoms are bonded to thallium atoms, respectively, so that each is four-coordinate and possesses a formal oxidation state of +3 with the remaining three-coordinate thallium atom in the +1 oxidation state. Quantum mechanical calculations at the MP2 level of theory show that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions exhibit true minima and display geometries that are in agreement with their experimental structures. Natural bond orbital and electron localization function analyses were utilized in describing the bonding in the present and previously published Tl/Se anions, and showed that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions are electron-precise rings and cages.  相似文献   

2.
The Tl5Se5(3-) anion has been obtained by extracting KTlSe in ethylenediamine in the presence of 2,2,2-crypt. The salt, (2,2,2-crypt-K+)3Tl5Se5(3-), crystallizes in the triclinic system, space group P1, with Z = 2 and a = 11.676(2) A, b = 16.017(3) A, c = 25.421(5) A, alpha = 82.42(3) degrees, beta = 88.47(3) degrees, gamma = 69.03(3) degrees at -123 degrees C. Two other mixed oxidation state TlI/TlIII anions; Tl4Se5(4-) and Tl4Se6(4-), have been obtained by extracting KTlSe into liquid NH3 in the presence of 2,2,2-crypt and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy and were shown to exist as a 1:1 equilibrium mixture at -40 degrees C. The couplings, 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl), have been observed for Tl4Se5(4-) and Tl4Se6(4-) and have been used to arrive at the solution structures of both anions. Structural assignments were achieved by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR spectra and that arise from natural abundance 205,203Tl and 77Se or enriched 77Se isotopomer distributions. The structures of all three anions are based on a Tl4Se4 cube in which Tl and Se atoms occupy alternate corners. There are one and two exo-selenium atoms bonded to thallium in Tl4Se5(4-) and Tl4Se6(4-), respectively, so that these thalliums are four-coordinate and possess a formal oxidation state of +3 and the remaining three-coordinate thallium atoms are in the +1 oxidation state. The structure of Tl5Se5(3-) may be formally regarded as an adduct in which Tl+ is coordinated to the unique exo-selenium and to two seleniums in a cube face containing the TlIII atom. The Tl4Se5(4-), Tl4Se6(4-), and Tl5Se5(3-) anions and the presently unknown, but structurally related, Tl4Se4(4-) anion can be described as electron-precise cages. Ab initio methods at the MP2 level of theory show that Tl4Se5(4-), Tl4Se6(4-), and Tl5Se5(3-) exhibit true minima and display geometrical parameters that are in excellent agreement with their experimental cubanoid structures, and that Tl4Se4(4-) is cube-shaped (Td point symmetry). The gas-phase energetics associated with plausible routes to the formation and interconversions of these anions have been determined by ab initio methods and assessed. It is proposed that all three cubanoid anions are derived from the known Tl2Se2(2-), TlSe3(3-), Se2(2-), and polyselenide anions that have been shown to be present in the solutions they are derived from.  相似文献   

3.
Chi L  Corbett JD 《Inorganic chemistry》2001,40(12):2705-2708
The title compound with heteratomic anionic chains [Tl(4)Sb(6)(12)(-)] has been discovered in the K-Tl-Sb system. The phase is obtained from a range of compositions near K(3)TlSb(1.5) following reaction first at 750-850 degrees C and then at 550 degrees C for one week or more. It crystallizes in the monoclinic system in space group C2/c, Z = 8, a = 9.951(1) A, b = 17.137(3) A, c = 19.640(6) A, and beta = 104.26(3) degrees. Swing-like (Tl(4)Sb(6))(12)(-) units consisting of alternating Sb and Tl atoms in four- and eight-membered rings are linked through Tl-Tl bonds to form infinite one-dimensional chains along a. EHTB calculations and resistivity measurements show that the compound is a semiconductor.  相似文献   

4.
The cesium-richest phase in the Cs-Tl system, CsTl, can be isolated as a pure crystalline phase through slow cooling of cesium-richer compositions in Ta followed by vacuum sublimation of the excess Cs at approximately 100 degrees C. The compound melts incongruently in the neighborhood of 150 degrees C. The structure was established by single crystal X-ray diffraction at room temperature (orthorhombic Fddd, Z = 48, a = 32.140(3) ?, b = 15.136(1) ?, and c = 9.2400(7) ?. The isolated Tl(6)(6)(-) ions in the structure, tetragonally compressed octahedra, exhibit D(2) symmetry with 相似文献   

5.
The isomorphous title compounds (and the ordered substitutional Rb(14)CsTl(27)) are obtained directly from reactions of the elements in sealed Ta below approximately 330 degrees C. Refinements of single-crystal data for the three established a structure with alternate layers of isolated pentacapped trigonal prismatic Tl(11)(7)(-) (D(3)(h)()) ions and condensed [Tl(16)(8-)] networks that are separated by cations. The condensed layer consists of Tl(11) units that share prismatic edges and are interbridged through waist-capping atoms (Tl(6/2)Tl(3)Tl(2)). (Rb(15)Tl(27): P&sixmacr;2m, Z = 1, a = 10.3248(6) ?, c = 17.558(2) ?.) The rubidium phase is a poor metal (rho(293) approximately 34 &mgr;Omega.cm) and is Pauli-paramagnetic. Extended Hückel band calculations indicate partially filled bands and a non-zero DOS at E(F), consistent with the observed metallic behavior, although appropriate cation tuning or modest anion doping should provide a Zintl phase. The band structure and COOP curves are also used to rationalize the distortion of the Tl(11) unit on condensation and the critical role of the interfragment bonds between waist-capping atoms in stabilizing the layer.  相似文献   

6.
The syntheses and properties of tetra- and pentanuclear vanadium(IV,V) carboxylate complexes are reported. Reaction of (NBzEt(3))(2)[VOCl(4)] (1a) with NaO(2)CPh and atmospheric H(2)O/O(2) in MeCN leads to formation of (NBzEt(3))(2)[V(5)O(9)Cl(O(2)CPh)(4)] 4a; a similar reaction employing (NEt(4))(2)[VOCl(4)] (1b) gives (NEt(4))(2)[V(5)O(9)Cl(O(2)CPh)(4)] (4b). Complex 4a.MeCN crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -148 degrees C: a = 13.863(13) ?, b = 34.009(43) ?, c = 12.773(11) ?, and Z = 4. The reaction between (NEt(4))(2)[VOBr(4)] (2a) and NaO(2)CPh under similar conditions gives (NEt(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6a), and the use of (PPh(4))(2)[VOBr(4)] (2b) likewise gives (PPh(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6b). Complex 6b crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -139 degrees C: a = 18.638(3) ?, b = 23.557(4) ?, c = 12.731(2) ?, and Z = 4. The anions of 4a and 6b consist of a V(5) square pyramid with each vertical face bridged by a &mgr;(3)-O(2)(-) ion, the basal face bridged by a &mgr;(4)-X(-) (X = Cl, Br) ion, and a terminal, multiply-bonded O(2)(-) ion on each metal. The RCO(2)(-) groups bridge each basal edge to give C(4)(v)() virtual symmetry. The apical and basal metals are V(V) and V(IV), respectively (i.e., the anions are trapped-valence). The reaction of 1b with AgNO(3) and Na(tca) (tca = thiophene-2-carboxylate) in MeCN under anaerobic conditions gives (NEt(4))(2)[V(4)O(8)(NO(3))(tca)(4)] (7). Complex 7.H(2)O crystallizes in space group C2/c with the following unit cell dimensions at -170 degrees C: a = 23.606(4) ?, b = 15.211(3) ?, c = 23.999(5) ?, and Z = 4. The anion of 7 is similar to those of 4a and 6b except that the apical [VO] unit is absent, leaving a V(4) square unit, and the &mgr;(4)-X(-) ion is replaced with a &mgr;(4),eta(1)-NO(3)(-) ion. The four metal centers are now at the V(IV), 3V(V) oxidation level, but the structure indicates four equivalent V centers, suggesting an electronically delocalized system. Variable-temperature magnetic susceptibility data were collected on powdered samples of 4b, 6a, and 7 in the 2.00-300 K range in a 10 kG applied field. 4b and 6a both show a slow increase in effective magnetic moment (&mgr;(eff)) from approximately 3.6-3.7 &mgr;(B) at 320 K to approximately 4.5-4.6 &mgr;(B) at 11.0 K and then a slight decrease to approximately 4.2 &mgr;(B) at 2.00 K. The data were fit to the theoretical expression for a V(IV)(4) square with two exchange parameters J = J(cis)() and J' = J(trans)() (H = -2JS(i)()S(j)()): fitting of the data gave, in the format 4b/6a, J= +39.7/+46.4 cm(-)(1), J' = -11.1/-18.2 cm(-)(1) and g = 1.83/1.90, with the complexes possessing S(T) = 2 ground states. The latter were confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.500-50.0 kG ranges: fitting of the data gave S(T) = 2 and D = 0.00 cm(-)(1) for both complexes, where D is the axial zero-field splitting parameter. Complex 7 shows a nearly temperature-independent &mgr;(eff) (1.6-2.0 &mgr;(B)) consistent with a single d electron per V(4) unit. The (1)H NMR spectra of 4b and 6a in CD(3)CN are consistent with retention of their pentanuclear structure on dissolution. The EPR spectrum of 7 in a toluene/MeCN (1:2) solution at approximately 25 degrees C yields an isotropic signal with a 29-line hyperfine pattern assignable to hyperfine interactions with four equivalent I = (7)/(2) (51)V nuclei.  相似文献   

7.
We have searched for new species of small oxygen-containing gas-phase dianions produced in a secondary ion mass spectrometer by Cs+ ion bombardment of solid samples with simultaneous exposure of their surfaces to O2 gas. The targets were a pure zinc metal foil, a copper-contaminated zinc-based coin, two silicon-germanium samples (Si(1-x)Ge(x)(with x= 6.5% or 27%)) and a piece of titanium metal. The novel dianions Zn3O(4)(2-), Zn4O(5)(2-), CuZn2O(4)(2-), Si2GeO(6)(2-), Ti2O(5)(2-) and Ti3O(7)(2-) have been observed at half-integer m/z values in the negative ion mass spectra. The heptamer dianions Zn3O(4)(2-) and Ti2O(5)(2-) have been unambiguously identified by their isotopic abundances. Their flight times through the mass spectrometer are approximately 20 micros and approximately 17 micros, respectively. The geometrical structures of the two heptamer dianions Ti2O(5)(2-), and Zn3O(4)(2-) are investigated using ab initio methods, and the identified isomers are compared to those of the novel Ge2O(5)(2-) and the known Si2O(5)(2-) and Be3O(4)(2-) dianions.  相似文献   

8.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

9.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

10.
SO(2) solutions of azide anions are bright yellow, and their Raman spectra indicate the presence of covalently bound azide. Removal of the solvent at -64 degrees C from CsN(3) or N(CH(3))(4)N(3) solutions produces yellow (SO(2))(2)N(3)(-) salts. Above -64 degrees C, these salts lose 1 mol of SO(2), resulting in white SO(2)N(3)(-) salts that are marginally stable at room temperature and thermally decompose to the corresponding azides and SO(2). These anions were characterized by vibrational and (14)N NMR spectroscopy and theoretical calculations. Slow loss of the solvent by diffusion through the walls of a sealed Teflon tube containing a sample of CsSO(2)N(3) in SO(2) resulted in white and yellowish single crystals that were identified by X-ray diffraction as CsSO(2)N(3).CsSO(3)N(3) with a = 9.542(2) A, b = 6.2189(14) A, c = 10.342(2) A, and beta = 114.958(4) degrees in the monoclinic space group P2(1)/m, Z = 2, and Cs(2)S(2)O(5).Cs(2)S(2)O(7).SO(2), respectively. Pure CsSO(3)N(3) was also prepared and characterized by vibrational spectroscopy. The S-N bond in SO(2)N(3)(-) is much weaker than that in SO(3)N(3)(-), resulting in decreased thermal stability, an increase in the S-N bond distance by 0.23 A, and an increased tendency to undergo rotational disorder. This marked difference is due to SO(3) being a much stronger Lewis acid (pF(-) value of 7.83) than SO(2) (pF(-) value of 3.99), thus forming a stronger S-N bond with the Lewis base N(3)(-). The geometry of the free gaseous SO(2)N(3)(-) anion was calculated at the RHF, MP2, B3LYP, and CCSD(T) levels. The results show that only the correlated methods correctly reproduce the experimentally observed orientation of the SO(2) group.  相似文献   

11.
The title compound was synthesized in a niobium container by fusion of the elements followed by slow cooling. In the first stage, the stoichiometric proportion KNaCd(3)Tl(7) yielded a heterogeneous product containing a few single crystals of the compound K(6)(Na(2.36(9))Cd(1.64(9)))Tl(12)Cd, the structure of which was established by a single crystal X-ray diffraction technique (cubic, Im&thremacr;, a = 11.352(2) ?, Z = 2, R(F) = 3.24%, Rw(F) = 4.60%). Occurrence of a stoichiometry range for the compound was indicated after a new reaction starting from the composition K(6)Na(2)Cd(3)Tl(12) gave a quite homogeneous and well-crystallized product (refined composition K(6)(Na(1.93(7))Cd(2.07(7)))Tl(12)Cd, Im&thremacr;, a = 11.321(2) ?, Z = 2, R(F) = 3.98%, Rw(F) = 4.99%). The structure of K(6)(NaCd)(2)Tl(12)Cd is distinguishable from that reported for Na(4)K(6)Tl(13) by replacement of the icosahedron centering thallium and of half the sodium cations by cadmium. Statistical occupation disorder occurs on the 8(c) position of the outer Cd/Na atom. The structure contains the 50-electron closed shell centered Tl(12)Cd(12-) icosahedral cluster with &thremacr;m symmetry (T(h)). Extended Hückel molecular orbital and band calculations were carried out to analyze the centering effect on the anion stability and look at the electron transfer, especially from cadmium lying within the first coordination shell of the icosahedral cluster. Electron localization within the Cd-centered icosahedron is not as evident as in the Tl-centered thallium icosahedral clusters described elsewhere; actually, cadmium is found to bridge icosahedra within a more three-dimensional network than sodium by forming bonds that are mainly covalent. The compound is a semiconducting Zintl phase with closed shell bonding.  相似文献   

12.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

13.
The first monomeric antimony alkoxides, Sb(OC(6)H(3)Me(2))(3) (1) and Sb(OEt)(5) x NH(3) (2), have been crystallographically characterized. The former adopts a trigonal pyramidal geometry, while the latter is octahedral about antimony; hydrogen bonding between NH(3) and SbOEt groups in Sb(OEt)(5) small middle dotNH(3) creates a one-dimensional lattice arrangement. Reaction of pyridine with SbCl(5) in EtOH/hexane yields the salt [Hpy(+)](9)[Sb(2)Cl(11)(5)(-)][Cl(-)](4) (3), which has also been crystallographically characterized. Crystallographic data: 1, C(24)H(27)O(3)Sb, a = 10.9080(2), b = 11.9660(2), c = 17.7260(4) A, alpha = 109.740(1) degrees, monoclinic P2(1)/c (unique axis a), Z = 4; 2, C(10)H(28)NO(5)Sb, a = 7.7220(1), b = 19.0700(2), c = 21.6800(3) A, beta = 93.4960(7) degrees, monoclinic P2(1)/c, Z = 8; 3, C(45)H(54)Cl(15)N(9)Sb(2), a = 13.4300(2), b = 14.4180(2), c = 17.4180(3) A, alpha = 82.7650(7), beta = 77.5570(7), gamma = 70.7670(7) degrees, triclinic P1, Z = 2.  相似文献   

14.
[Et(4)N][W(CO)(5)OH] (1) and [PPN][W(CO)(5)O(2)COH] (2) have been synthesized and characterized by (1)H and (13)C NMR and IR spectroscopies, and the X-ray crystal structure of 2 has been determined. Complex 2 crystallizes in the triclinic space group P&onemacr; with unit cell parameters a = 12.208(2) ?, b = 13.497(2) ?, c = 13.681(2) ?, alpha = 101.06(2) degrees, beta = 114.76(1) degrees, gamma = 98.45(2) degrees, V = 1942.6(5) ?(3), and Z = 2. The structure of the anion of complex 2 consists of a central W(0) bound to five carbonyl ligands, and the coordination around the metal is completed by a monodentate bound bicarbonate ligand located 2.19(1) ? away from the metal center. In the solid state, two anions are hydrogen bonded to one another via the bicarbonate ligands in the unit cell. Complex 1 inserts CO(2), COS, or CS(2) to rapidly afford the corresponding bicarbonate or thiocarbonate complexes. The lower limit for the rate constant for the carboxylation of complex 1 has been determined to be 4.2 x 10(-)(4) M(-)(1) s(-)(1) at -70.2 degrees C, and the lower limit for the rate constant for the decarboxylation of complex 2 has been found to be 2.5 x 10(-)(3) s(-)(1) at 20.0 degrees C. In addition, the rate constant for the decarbonylation of 2 was determined to be 7.60 x 10(-)(3) s(-)(1) at 36.0 degrees C, a value which is somewhat faster than anticipated on the basis of analogous data for a large variety of W(CO)(5)O(2)CR(-) derivatives. This is attributed to a diminution of the electron-withdrawing ability of the OH substituent in O(2)COH as a result of hydrogen bonding to solvent. Nevertheless, it is clear that the rate of decarboxylation of the anion from complex 2 is faster than the rate of CO dissociation. Concomitantly, carboxylation of complex 1 is faster than CO dissociation, since the W(CO)(5)OH(-) is inert toward (13)CO exchange on the time scale of carboxylation at -70.2 degrees C.  相似文献   

15.
Reactions of the elements within welded Ta containers at approximately 600 degrees C followed by slow cooling give new A(8)Tl(11)Pd(x) products from an apparently continuous encapsulation of Pd atoms into the pentacapped trigonal prismatic anions in the isotypic rhombohedral (R3 macro c) A(8)Tl(11) phases. All systems also produce other phases at x < 1 as well, the simplest being the cesium system in which only trigonal Pd(13)Tl(9) is also formed. Cs(8)Tl(11)Pd(0.84(1)) was characterized by single-crystal means as close to the upper x limit in that system (R3 macro c, Z = 6, a = 10.610(1) A, c = 54.683(8) A). The Pd insertion causes an expansion of the D(3) host anion, particularly about the waist, to generate a trigonal bipyramidal PdTl(5) unit (d(Pd-Tl) approximately 2.6-2.8 A) centered within a somewhat larger Tl(6) trigonal prism, the remainder of the Tl(11) cluster. Strong Tl cage bonding is retained. Extended Hückel calculations show significant involvement of all Tl 6s, 6p and Pd 4d, 5s, 5p orbital sets in the central and cage bonding. The last valence electron is considered to be delocalized in a conduction band, as in A(8)Tr(11) examples, rather than occupying an antibonding e' LUMO across a gap of approximately 2.4 eV.  相似文献   

16.
The synthesis and characterization of three new organothallium(I) compounds are reported. Reaction of (Ar'Li)(2) (Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)) and Ar"Li (Ar" = C(6)H(3)-2,6-(C(6)H(3)-2,6-Me(2))(2)) with TlCl in Et(2)O afforded (Ar'Tl)(2) (1) and (Ar' 'Tl)(3) (2). The "dithallene" 1 is the heaviest group 13 dimetallene and features a planar, trans-bent structure with Ar'Tl-Tl = 119.74(14) degrees and Tl-Tl = 3.0936(8) A. Compound 2 is the first structurally characterized neutral, three-membered ring species of formula c-(MR)(3) (M = Al-Tl; R = organo group). The Tl(3) ring has Tl-Tl distances in the range ca. 3.21-3.37 A as well as pyramidal Tl geometries. The Tl-Tl bonds in 1 and 2 are outside the range (2.88-2.97 A) of Tl-Tl single bonds in R(2)TlTlR(2) compounds. The weak Tl-Tl bonding in 1 and 2 leads to their dissociation into Ar'Tl and Ar' 'Tl monomers in hexane. The Ar'Tl monomer behaves as a Lewis base and readily forms a 1:1 donor-acceptor complex with B(C(6)F(5))(3) to give Ar'TlB(C(6)F(5))(3), 3. Adduct 3 features an almost linear thallium C(ipso)-Tl-B angle of 174.358(7) degrees and a Tl-B distance of 2.311(2) A, which indicates strong association. Treatment of 1 with a variety of reagents resulted in no reactions. The lower reactivity of 1 is in accord with the reluctance of Tl(I) to undergo oxidation to Tl(III) due to the unreactive character of the 6s(2) electrons.  相似文献   

17.
Pd(PCy(3))(2) (Cy = cyclohexyl) reacts with As(7)(3-) in en/tol solvent mixtures to give Pd(2)As(14)(4-) (2) and Pd(7)As(16)(4-) (4) as the [K(2,2,2-crypt)](+) salts. The anions were characterized by EDX, ESI-MS, and single-crystal X-ray diffraction. Anion 2 formally contains two norbornadiene-like As(7)(5-) groups bound to square-planar Pd(III) centers linked by a Pd-Pd bond (d(Pd)(-)(Pd) = 2.7144(6) A). Anion 4 has a highly distorted capped trigonal prismatic Pd(7) core stabilized by 2 As(5)(1-), 2 As(2)(2-), and 2 As(3-) anions. The 6 Pd(I) ions are in distorted 5-coordinate environments whereas the lone Pd(II) ion is square planar. Complexes 2 and 4 are rare examples of organic-free, homoleptic transition metal anions containing group 15 elements, and they represent an emerging class of charged "molecular alloys".  相似文献   

18.
The addition of 4.0 equiv of Na(silox) to Na[W(2)Cl(7)(THF)(5)] afforded (silox)(2)ClW&tbd1;WCl(silox)(2) (1, 65%). Treatment of 1 with 2.0 equiv of MeMgBr in Et(2)O provided (silox)(2)MeW&tbd1;WMe(silox)(2) (2, 81%). In the presence of 1 atm of H(2), reduction of 1 with 2.0 equiv of Na/Hg in DME provided (silox)(2)HW&tbd1;WH(silox)(2) (3, 70%), characterized by a hydride resonance at delta 19.69 (J(WH) = 325 Hz, (1)H NMR). Exposure of 2 to 1 atm of H(2) yielded 3 and CH(4) via (silox)(2)HW&tbd1;WMe(silox)(2) (4); use of D(2) led to [(silox)(2)WD](2) (3-d(2)). Exposure of 3 to ethylene ( approximately 1 atm, 25 degrees C) in hexanes generated (silox)(2)EtW&tbd1;WEt(silox)(2) (5), but solutions of 5 reverted to 3 and free C(2)H(4) upon standing. NMR spectral data are consistent with a sterically locked, gauche, C(2) symmetry for 1-5. Thermolysis of 3 at 100 degrees C (4 h) resulted in partial conversion to (silox)(2)HW&tbd1;W(OSi(t)Bu(2)CMe(2)CH(2))(silox) (6a, approximately 60%) and free H(2), while extended thermolysis with degassing (5 d, 70 degrees C) produced a second cyclometalated rotational isomer, 6b (6a:6b approximately 3:1). When left at 25 degrees C (4 h) in sealed NMR tubes, 6 and free H(2) regenerated 3. Reduction of 1 with 2.0 equiv of Na/Hg in DME also afforded 6a (25%). When 3 was exposed to approximately 3 atm of H(2), equilibrium amounts of [(silox)(2)WH(2)](2) (7) were observed by (1)H NMR spectroscopy (3 + H(2) right harpoon over left harpoon 7; 25.9-88.7 degrees C, DeltaH = -9.6(4) kcal/mol, DeltaS = -21(2) eu). Benzene solutions of 3 and 1-3 atm of D(2) revealed incorporation of deuterium into the silox ligands, presumably via intermediate 6. In sealed tubes containing [(silox)(2)WCl](2) (1) and dihydrogen (1-3 atm), (1)H NMR spectral evidence for [(silox)(2)WCl](2)(&mgr;-H)(2) (8) was obtained, suggesting that formation of 3 from 1 proceeded via reduction of 8. Alternatively, 3 may be formed from direct reduction of 1 to give [(silox)(2)W](2) (9), followed by H(2) addition. Hydride chemical shifts for 7 are temperature dependent, varying from delta 1.39 (-70 degrees C, toluene-d(8)), to delta 3.68 (90 degrees C). (29)Si{(1)H} NMR spectra revealed a similar temperature dependence of the silox (delta 12.43, -60 degrees C, to delta 13.64, 45 degrees C) resonances. These effects may arise from thermal population of a low-lying, deltadelta, paramagnetic excited state of D(2)(d)() [(silox)(2)W](2)(&mgr;-H)(4) (DeltaE approximately 2.1 kcal/mol, chi(7a) approximately 0.03), an explanation favored over thermal equilibration with an energetically similar but structurally distinct isomer (e.g., [(silox)(2)WH(2)](2)(&mgr;-H)(2), DeltaG degrees approximately 0.69 kcal/mol, chi(7b) approximately 0.25) on the basis of spectral arguments. Extended Hückel and ab initio molecular orbital calculations on model complexes [(H(3)SiO)(2)W](2)(&mgr;-H)(4) (staggered bridged 7a', EHMO), [(H(3)SiO)(2)WH(2)](2) (all-terminal 7b', EHMO), [(H(3)SiO)(2)W](2) (9', EHMO), (HO)(4)W(2)(H(4)) (staggered-bridged 7", ab initio), and (HO)(4)W(2)(H(4)) (bent-terminal 7, ab initio) generally support the explanation of a thermally accessible excited state and assign 7 a geometry intermediate between the all-terminal and staggered-bridged forms.  相似文献   

19.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

20.
Studies on the subtle effects and roles of polyatomic anions in the self-assembly of a series of AgX complexes with 2,4'-Py(2)S (X(-) = NO(3)(-), BF(4)(-), ClO(4)(-), PF(6)(-), CF(3)CO(2)(-), and CF(3)SO(3)(-); 2,4'-Py(2)S = 2,4'-thiobis(pyridine)) have been carried out. The formation of products appears to be primarily associated with a suitable combination of the skewed conformers of 2,4'-Py(2)S and a variety of coordination geometries of Ag(I) ions. The molecular construction via self-assembly is delicately dependent upon the nature of the anions. Coordinating anions afford the 1:1 adducts [Ag(2,4'-Py(2)S)X] (X(-) = NO(3)(-) and CF(3)CO(2)(-)), whereas noncoordinating anions form the 3:4 adducts [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Each structure seems to be constructed by competition between pi-pi interactions of 2,4'-Py(2)S spacers vs Ag.X interactions. For ClO(4)(-) and PF(6)(-), an anion-free network consisting of linear Ag(I) and trigonal Ag(I) in a 1:2 ratio has been obtained whereas, for the coordinating anions NO(3)(-) and CF(3)CO(2)(-), an anion-bridged helix sheet and an anion-bridged cyclic dimer chain, respectively, have been assembled. For a moderately coordinating anion, CF(3)SO(3)(-), the 3:4 adduct [Ag(3)(2,4'-Py(2)S)(4)](CF(3)SO(3))(3) has been obtained similarly to the noncoordinating anions, but its structure is a double strand via both face-to-face (pi-pi) stackings and Ag.Ag interactions, in contrast to the noncoordinating anions. The anion exchanges of [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = BF(4)(-), ClO(4)(-), and PF(6)(-)) with BF(4)(-), ClO(4)(-), and PF(6)(-) in aqueous media indicate that a [BF(4)(-)] analogue is isostructural with [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Furthermore, the anion exchangeability for the noncoordinating anion compounds and the X-ray data for the coordinating anion compounds establish the coordinating order to be NO(3)(-) > CF(3)CO(2)(-) > CF(3)SO(3)(-) > PF(6)(-) > ClO(4)(-) > BF(4)(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号